Bleaching of Pulp And Its Chemistry, A Brief Introduction

ARVIND KUMAR SHARMA SCIENTIST-B

Crash Course on paper making for non paper, June 03, 2025 Hotel Vivanta, New Delhi Dwarka,

1

- **1- Bleaching General**
- 2-Objective of bleaching
- **3-Chemicals used for bleaching**
- **4-Types of bleaching reactions**
- **5-** Chemical reactions and Mechanism
- 6- Bleaching chemicals characteristics
- 7- Auxillary bleaching chemicals
- 8- Conclusion

≻High brightness of pulps.

- >Brightness stability by removing chromophoric structures.
- ➢High pulp cleanliness by removing extractive and other contaminants.
- ≻High cellulose content.

These objective must be achieved without compromising the strength of the final product.

Bleaching

Two principally different methods

Lignin removing bleaching

- No lignin no color
- Break up lignin molecules into smaller fragments.
- Make the fragments water soluble by introducing hydrophilic groups
- Suitable for chemical fiber

Lignin preserving bleaching/brightening

The lignin is not removed from the fiber, but color is removed

- High yield pulps (mechanical, Chemimechanical-----)
- Make the lignin brighter

Chemicals Used For Bleaching

- Chlorine (Cl₂) C
- Hypochlorite (ClO⁻) H
- Chlorine dioxide (ClO₂) D
- Alkali (NaOH) E
- **Ozone** $(0_3) Z$
- **Peroxide** (H₂O₂) P
- Complexing agent Q

- Peracids Pa, Ca
- Bisulfite
- Dithionite (hydrosulfite) Y
- Formamidinic sulfonic acid FAS
- Enzyme (xylanase) X
- Enzyme (laccase) L

Bleach Chemical		Molecular Mass	Mole e ⁻ /mole	g/ mole e ⁻	OXE/kg
		(g/mol)	chemical		
Cl ₂	С	71	2	35.5	28.2
NaoCl	Н	74.5	2	37.2	26.8
Clo2	D	67.5	5	13.5	74.1
O 2	0	32	4	8	125
H2O2	Р	34	2	17	58.8
O 3		48	6	8	125

Effects of bleaching agents on brightness and cellulose molecular mass

- Bleaching response decreases with increasing chemical charge
- Cellulose degradation increases with increasing chemical charge
- A bright fiber is usually no problem. The problem is how to obtain a sufficiently bright fiber with sufficient strength for a low cost

Chemical Charge

Solution: Multistage Bleaching

Chemical Charge

Chemical and Mechanical pulp bleaching sequences

Chemical pul	Mechanical pulp		
Conventional	ECF TCF		bleaching sequence
СЕрН	DEpD	OZP	QPP
СЕрНН	ODEOpD	OZEpP	QPYP
CEopHD	OD/CEopD	OAZEp(PO)	QYP
OCEopHD	ODEopDP	OZ(EOP)P	PP
OD/CEpD	OD _{ht} ZEpD	OAZP	

Bleaching conditions for different bleaching sequences

Parameters	Conventional bleaching sequence					ECF bleaching sequence			
	O stage	C stage	Eop stage	H Stage	D stage	O stage	Do stage	Eop stage	D1 stage
Consistency, %	10	8	10	10	10	10	8	10	5
Reaction time, min	90	30	90	120	180	90	60	90	60
Reaction temp, ⁰ C	90	Amb	70	40-45	80	90	75-80	70	80
pН	10.5-11.5	<2	11-12	9.5-10.5	3-4	11-12	2.5-3.0	11-12	3-4

Parameters	TCF bleaching sequence				QPP bleaching sequence		
	O stage	Z stage	Eop stage	P stage	Q stage	P stage	P stage
Consistency, %	10	25-30	10	10	10	10	10
Reaction time, min	90	5.0	90	120	60	120	120
Reaction temp, ⁰ C	90	30-40	70	70	60-65	70	70
рН	10.5-11.5	2-3	11-12	9-10	5-6	2.5-3.0	9-10

Chlorine free bleaching

- Bleaching sequences of chemical fibres
- Elemental Chlorine Free (ECF):
 - Chlorine (Cl₂) is not allowed, other chlorine containing chemicals (ClO₂) are allowed Example: OD(EOP)D
- "ECF-light"
 - ECF sequences where the ClO₂ charge has been reduced by substituting chlorine free chemicals for ClO₂ in one or more stages: Example: OZ(EOP)DEP
- Total chlorine Free (TCF)

-Neither chlorine(Cl₂) nor other chlorine- containing chemicals are allowed : Example: OZ(EOP)PP

Bleaching Reaction Mechanisms

Reaction Mechanism	Bleaching chemicals	Target	Effect
Electrophilic reaction mechanism	Chlorine, Hypochlorous acid, Ozone, Chlorine dioxide and Paa	Unsaturated structures (- C=C-) [lignin, HexA, extractives]	Chlorination of lignin and Oxidation of lignin
Nucleophilic reaction mechanism	Sodium hydroxide, Hydrogen peroxide, Hypochlorous acid and Paa	Electrophilic carbon atoms, such as carbonyl structures (C=O) [lignin, extractives]	Brightening effect, oxidation of lignin
Radicals reaction mechanism	Chlorine dioxide, Ozone and Oxygen	Phenolic and non phenolic structures with ClO2, O3 and Phenolic structure with O2	Brightening effect, oxidation and chlorination of lignin

Electrophiles attack on lignin

Sites of Attack by Electrophiles

Nucleophiles Attack on Lignin

Sites of Attack by Nucleophiles

Compared to pulping, bleaching is

- is a delignification process
- Is more selective in terms yields and D.P
- Is more expensive per unit of lignin remove
- Removes less lignin
- Produce problematic effluent

Oxygen Delignification - Purpose

• Extended lignin removal to minimize the volume of more

expensive bleaching chemicals

- Minimize pulp degradation (cellulose loss)
- Reduce the amount of lignin to the bleach plant
- Minimize environmental load
- Reduce bleaching chemical demand

Stepwise Reduction of Oxygen To Water

Oxygen and the lignin

Chlorination stage- C stage

- Bleaching of chemical fibres
- Very effective bleaching agent for lignin degradation
- Pulp viscosity drop upto 15%
- Ability to remove dirt particles from pulp
- Reaction with lignin
 - Substitution reaction and electrophilic displacement reaction
 - Oxidation reaction
 - Catalytic hydrolysis reaction
 - Electrophilic addition reaction to carbon–carbon double bond

Effect of pH During Chlorination Stage

Extraction Stage – E stage

Objective:

- > To remove chlorinated and oxidized lignin formed in the chlorination stage
- ➢ Dissolves 80 % residual lignin removed in early stages.
- \succ To remove the physical barrier
 - Allow the exposure of unreacted lignin to further oxidation
- \succ To generate new active groups on the remaining lignin structures
 - Allow reaction with the oxidizing agent used in the next stage
- \succ To remove resins and fatty acids.
- ➤ Today, an oxidizing bleaching chemical (O₂ and H₂O₂) is often added as reinforcement.

O and/or P reinforced extraction

- Denoted (EO), (EP), (EOP)
- Increased delignification during extraction
- Increased brightness during extraction
- Reduced chemical consumption in later bleaching stage
- Less color in filtrate
- 5kg/ton O₂ Or 1.5 kg/ton peroxide in E = 3kg/ton lower ClO₂ charge in D₁
 for similar brightness

Hypochlorite – H stage

- The first pulp bleaching chemical (chemical fibers)
- Produced by alkalization of chlorine water

 $Cl_2 + 2 \text{ NaOH} \longrightarrow 2Na+OCl-+H_2O$

- Brightening bleaching chemicals
 - Decolourize some chromophoric structures by oxidation
- Maximum carbohydrate degradation at low and high pH

Chlorine dioxide -D stage

- Chlorine dioxide is an efficient delignification agent for chemical fibre .
- Generated on site.
- High selectivity towards lignin
- Attack on aliphatic bonds of lignin and there by reduce color.
- Works as a radical scavenger there by protected cellulose against depolymerisation.
- Used for initial delignification and final bleaching.
- Compliance with strict environmental regulations

Reactions of Chlorine Dioxide and lignin

• Reacts fastest (i.e. preferably) with phenolic lignin structures

• Reacts slowly with non- phenolic lignin structures

• Degrades lignin forms muconic acid type structures

Advantages of Chlorine Dioxide With Pulp

- High brightness of pulp
- Excellent for shive and dirt removal
- Substitute to Harmful Chlorine/Hypochlorite
- High strength pulp
- Brightness stability
- Reduce environmental problem

- For chemical fibers
- Chlorine free bleaching chemical
- Produced on site from oxygen up to 12%(w/w)
- Strong oxidizing agent, fast reaction
 - Somewhat poorer selectivity than chlorine dioxide
- Normally early in the bleach sequence
 - Can be used in combination with chlorine dioxide (DZ)stage
- Ozone is an oxidizing electrophilic reagent, which can oxidize
 - Free phenolic hydroxyl lignin structures
 - Non- phenolic hydroxyl lignin structures
 - Conjugated double bondlignin structures

Reactions of Ozone With Pulp

Benefit of Ozone Bleaching

- Ozone is 10⁶ times more reactive towards lignin than towards carbohydrates.
- Removal of hexeneuronic acid present in pulps
- Extractive content significant reduced
- Brightness stability
- Unfortunately, radicals formation i.e. superoxide, hydroxyl are very reactive towards carbohydrates.
- Addition to additives to retard carbohydrate decompositions of pulps.
- Compliance with strict environmental regulations

Hydrogen Peroxide (H2O2) -P

- For chemical or Mechanical fibers
- Some what different process condition
- Chlorine free bleaching chemical
- Wide spread use in TCF sequences for chemical pulps
- Less effective for delignification compared to ClO₂
- •Very effective in final bleaching
- Works under alkaline condition: The reactive species is the prehydroxyl anion HOO-

Bleaching Chemical Characteristics, L=Low, M=Medium H=High

Bleaching	Eq.wt	Eq.Cl ₂	Efficiency	Reactivity	Selectivity	Dirt	Environment
chemicals						Removal	al implication
Cl ₂	35.5	1.00	Н	Н	Н	Н	Н
Clo ₂	13.5	2.63	Н	Μ	Н	Н	Μ
O 2	8	4.44	L	L	Μ	M	L
H_2O_2	17	2.09	L	L	Μ	L	L
O ₃	8	4.44	Н	Н	Μ	L	L
NaoCl	37.2	0.93	Μ	Μ	Μ	Η	Н

Auxiliary Chemicals And Their Functions In Bleaching

Bleaching chemicals	Function
Acid (A)	Removal of hexenueonic acid groups by acid hydrolysis
Alkali (E)	Dissolution of oxidized lignin residue after the First bleaching stage
Chelant (Q)	Removal of transition metals (Cu, Fe, Mn) which consume peroxide bleaching agent
Xylanase (X)	Degradation of surface lignin carbohydrate complexes

- For chemical bleaching of pulps the main reaction mechanism is oxidation.
- For Mechanical bleaching of pulp describes the decolorization of chromophoric group of lignin.
- It is important to remember that depending on bleaching conditions different intermediate products are formed.
- Reactions of bleaching chemicals are often very complex due the formation of intermediate products.

Thank you

Effect of % addition of chlorine (doze optimization)

Reactions of Chlorine and lignin

• Fast chlorination of the aromatic ring, at multiple site

• Slow fragmentation

• Cl₂ bound to the aromatic ring, yields polychlorinated (aromatic) compounds in filtrate- E.g. dioxins

- ≻Equivalent weight
- **≻**Efficiency
- ➢ Reactivity
- ➢ Selectivity
- >Particles bleaching ability
- >Environmental Implication

Reactivity may be defined in terms of the fraction of the residual lignin that the bleaching agent is practically capable of removing.

Selectivity is the degree of the residual lignin that the bleaching agent can remove lignin without dissolving or damaging the other components of the fiber, cellulose and hemicellulose.

Mass Transfer in Pulp Bleaching

Step-1	Dissolution of a gaseous bleaching agents in
	to bleaching phase
	The solubility of gas governs the rate of
	reaction.
Step-2	•The transport of bleaching chemicals from
	the bulk phase onto the fiber surface
	This rate is only dependent on mixing
Step-3	Diffusion of bleaching chemicals into the
	fiber cell wall where it is able to react with
	lignin or other cell wall components.
Step-4	Bleaching chemicals reaction itself
Step-5	Transport of the reaction products out of the
	cell wall
Step-6	Transport of the reaction products out into the
	bulk phase

ECF Bleaching Fibre Line

Technology Upgradation

