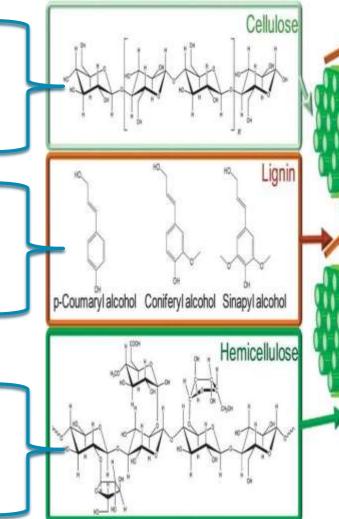


Dr. Puneet Pathak, Agriliv Research Foundation, Chidana, Sonipat - 131306, Haryana, India

Dr. Chhavi Sharma, University Centre for Research and Development, University Institute of Biotechnology, Chandigarh University, Mohali-140413, Punjab, India

03-06-2025

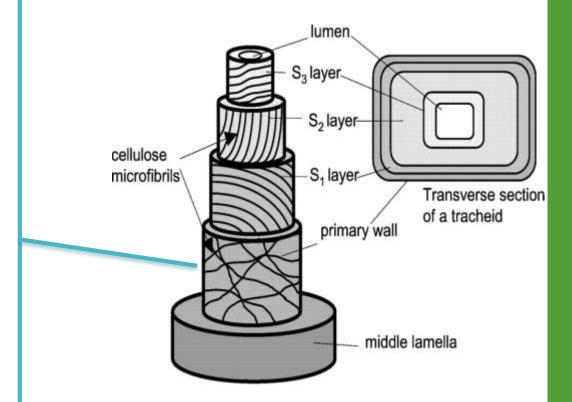


https://kwon.engr.tamu.edu/wp-content/uploads/sites/159/2019/07/Multi28-1024x565.png

STRUCTURAL COMPONENTS OF RAW MATERIALS

Cellulose:

- Long-chain polymer & Main structural component in plant cell walls
- Provides excellent tensile strength
- Forms the principal framework for fibres Lignin:
- Complex polymer & Binds cellulose and hemicellulose together
- Provides rigidity and resistance to degradation
- Crucial for plant strength but often removed in papermaking to improve fibre quality
 Hemicellulose:
- Heterogeneous group of polysaccharides
- Has a branched structure (unlike cellulose)
- Contributes less to tensile strength than cellulose
- Aids in bonding between cellulose fibres


Primary Cell Wall

Composition:

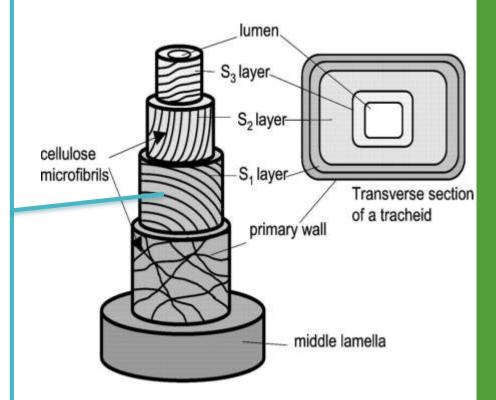
- Mainly cellulose, hemicellulose, and pectins **Features**:
 - Thin and flexible
 - Provides a protective interface for the cell
 - Enables growth

Function:

- Elasticity and isotropy
- Allows for expansion and contraction during processing
- Lies just inside the secondary wall
- Provides flexibility and acts as a transition between the rigid outer layer and the lumen

Secondary Cell Wall

Composition:

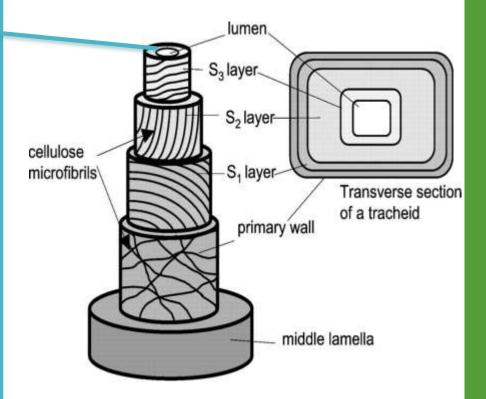

- Dominated by high concentrations of cellulose arranged in microfibrils
- Contains hemicelluloses and residual lignin

Sub-Layers:

- Divided into S1, S2, and S3 layers
- S2 layer is the thickest, with microfibrils oriented at a specific angle
- Microfibril orientation largely determines tensile strength and rigidity

Features:

- Thicker and more rigid than the primary wall
- Contributes most to mechanical strength of the fibre
- S2 layer is the most significant contributor due to high cellulose content and specific microfibril orientation


Lumen

Description:

• Hollow central cavity of the fibre

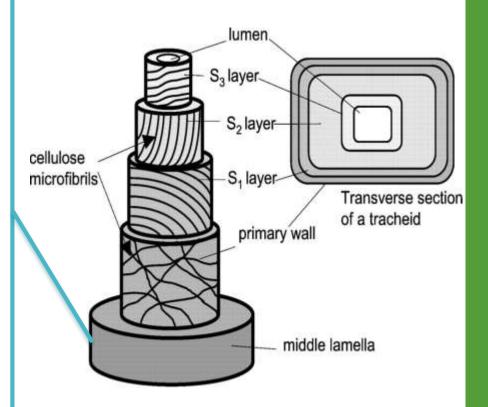
Role:

- Contributes to flexibility of the fibre and Influences
 water absorption during pulping
- Helps in swelling fibres, improving bonding during sheet formation
- A well-defined lumen enhances porosity, affecting brightness and printability of paper

6

Middle Lamella

Composition:

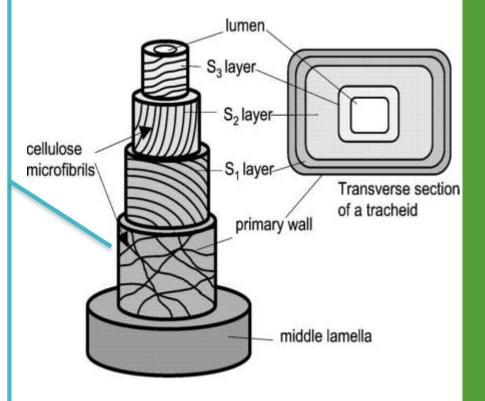

- Rich in pectins and lignin
- Acts as an **adhesive** between adjoining cells

Location:

- Not part of an individual fibre cell wall
- Essential when fibres form bundles, binding them together in plant tissue

Function:

 Crucial for aggregated fibres, cementing them in natural fibre bundles


Surface Fibrils and Microfibrils

Structure:

 Cellulose microfibrils embedded in a matrix of hemicellulose and lignin within the secondary cell wall

Function:

- Orientation and bonding of microfibrils
 (especially in the S2 layer) determine:
 - Tensile strength of the fibre
 - Bonding capacity during papermaking

8

RAW MATERIAL SOURCES

Wood

- Traditional & widely used fibre source
- Classified into hardwoods (smooth finish) & softwoods (strength & length)
- Provides uniform fibre structure

Agro-Waste

- Includes straw, husks, bagasse—previously regarded as waste
- Increasingly valued for its fibre potential
- Variable dimensions & cell wall thickness require intensive pretreatment

Waste Paper

- Recycled fibre from previously used paper products
- Recycled fibres degrade over time (shortened length, collapsed lumen)
- Modern recycling processes aim to preserve fibre integrity & remove contaminants

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

WOOD AS A RAW MATERIAL

Hardwood

Characteristics

- ✓- Derived from deciduous trees that shed leaves seasonally
- ✓ Shorter, finer fibres create smooth paper with high opacity
- \checkmark Ideal for printing & writing applications

Examples

- Common hardwood sources: eucalyptus, poplar, birch, aspen
- High fibre quality ensures refined & uniform paper surface

Usage in Papermaking

- Used in coatings, specialty papers & high-quality print materials
- Preferred for applications requiring smooth finish

WOOD AS A RAW MATERIAL

Characteristics

- Sourced from coniferous trees like pine, fir, spruce
- Longer, coarser fibres provide strength & durability
- Essential for packaging, tissue & industrial paper
 Examples
 - -- Pine & spruce known for high tensile strength
 - Favored in applications requiring structural integrity

Usage in Papermaking

- Typically blended with hardwood or other fibres
- Balances strength with smoothness for varied paper products

Softwood

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

Hardwood						
Eucalyptus	Sycamore					
Birch	Beech					
Aspen	Cherry					
Poplar	Elm					
Acacia	Willow					
Maple	Mahogany					
Oak	Teak					
Chestnut	Pecan					
Basswood	Walnut					
Rubberwood	Iroko					

Softwood

Ponderosa Pine
Lodgepole Pine
Jack Pine
Grand Fir
Longleaf Pine
Radiata Pine
Slash Pine
Southern Yellow Pine
Red Pine
Balsam Fir

AGRO-WASTE AS A RAW MATERIAL

Agro-waste encompasses a diverse range of organic materials remaining (residues) after crops have been harvested or processed.

Crop Residues

Wheat straw, rice straw, corn stalks, barley straw, sorghum residues
Rich in cellulose, suitable for fibre production

Husks & Shells

- Rice husk, oat husk, coconut husk
- High silica content (rice husk) requires specialized processing

Bagasse

- Sugarcane
 residue post juice
 extraction
- Abundant in sugar-producing regions, high in cellulose

Other Residues

- Banana stems,
 bamboo waste,
 various crop
 byproducts
 Explored for
- potential applications in papermaking

13

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

	Cereals	Wheat straw	Bast	New Zealand Flax	Stalk	Cereals	Wheat st	traw
Fibres		Oat straw	Fibres	Flax	Fibres		Oat strav	N
		Rye straw		Kenaf			Rye stra	
		Barley straw		Ramie			Barley st	
		Rice straw					Rice stra	
		Corn stalks		Jute			Corn sta	
		Grain sorghum		Okra			Grain	sorghum
		stalks		Common hemp			stalks	gram
		Millet		Sunn hemp			Millet	
		Esparto	Leaf	Abaca (Manila Hemp)		Grasse	Esparto	
	S	Sabai (dragon's	Fibres	Sisal (Sisal Hemp)		S	•	(dragon's
		beard)		Henequen			beard)	
		Lemon		Caroa			Lemon	
		Kuneria					Kuneria	
		Siru		Palm			Siru	
		Mawai		Hesperaloe			Mawai	
		Ulla	Seed	Cotton			Ulla	
		Munj	Hull				Munj	
		Elephant		Coir (coconut fibre)			Elephant	
	03-06-2025	Raw Materials as a Source	Fibres	Paper-making: Wood, Agro-waste, and N	Vaste Papers, F	Pathak & Sharm	1 na	4

WASTE PAPER GRADES

Grade 1 - Low qualities	 Unsorted and sorted mixed paper and board; Old corrugated containers; Unsold magazines; Mixed magazines and newspapers and sorted graphic paper
Grade 2 - Medium qualities	 Newspapers with and without flexographic printing; Lightly or heavily printed white shavings with and without glue; Sorted office paper; computer printout.
Grade 3 - High qualities	 Mixed lightly coloured wood and wood-free printers shavings; Wood-free binders; Tear white shavings; White wood-free letters
Grade 4 - Kraft qualities	 New shavings of corrugated board; Unused and used corrugated kraft; Used kraft paper and board of a natural or white shade.
Grade 5 - Special qualities	 Mixed recovered paper and board; Mixed packaging; Liquid board packaging; Wrapper kraft; Wet labels; Unprinted and printed white wet-strength wood-free papers.

OFFICE PAPERS

Definition: Office paper is a high-quality paper used in business and administrative environments.

Types: Includes printer/copier paper, writing paper, and stationery.

Common Usage: Found in offices, schools, and commercial establishments.

Key Features: Designed for clarity and longevity in written communication.

Fibre Quality: Typically exhibits good fibre uniformity and cleanliness Implications for Recycling

- High-quality recycled pulp suitable for printing & writing papers
- Requires less intensive de-inking than heavily processed papers

Raw Materials as a Source of Fibres for Faper-making. wood, Agro-waste, and Waste Papers, Pathak & Sharma

OFFICE PAPERS

Fibre Quality Refined wood pulps with a high proportion

of hardwood

fibres

Smooth surface & consistent fibre length distribution

Slick, bright finish enhances printing & copying clarity Chemical Treatments

Light coatings improve printability & resist ink bleed

Requires meticulous deinking during recycling Contamination Risks

Generally clean but may contain toner residues & adhesives

Minimal processing needed compared to coated papers

03-06-2025

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

NEWSPAPER

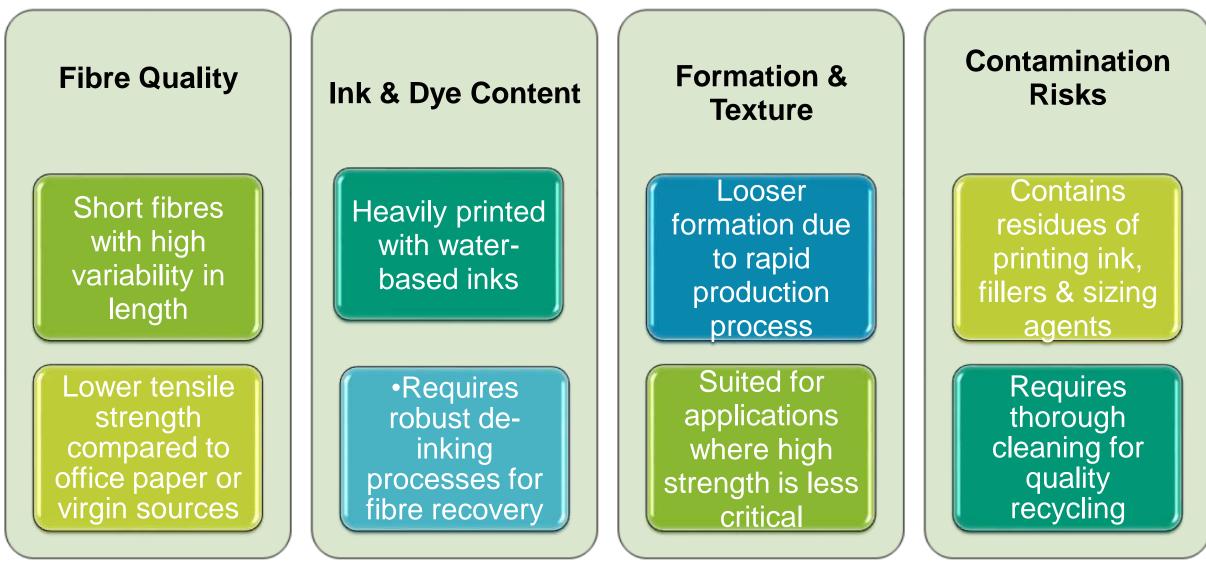
Purpose: Primarily used for mass communication.

Wastepaper Abundance: One of the most frequently collected wastepaper types.

Collection Sources: Gathered from households, newsstands, and

distribution centers after publication.

Material Quality: Made from lower-quality pulps to ensure cost-effectiveness and rapid production.


Economic Consideration: Designed to be inexpensive for large-scale distribution.

Implications for Recycling

- Valuable resource despite lower fibre quality
- Often blended with high-quality fibres or repurposed for corrugated board & newsprint

NEWSPAPER

03-06-2025

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

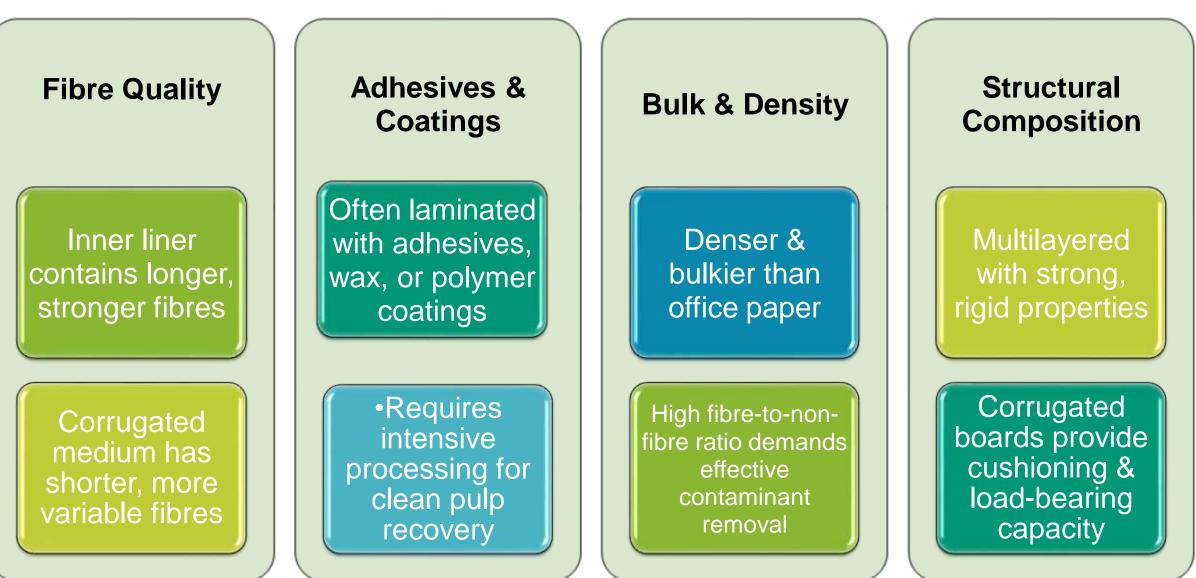
19

CARDBOARD

Definition: Cardboard refers to paper-based packaging materials. **Types**: Includes corrugated board (fluted inner layers with flat liners) and paperboard (single-layer, thicker materials).

Common Applications: Used for packaging boxes, cereal cartons, and various consumer goods.

Waste Collection: Gathered from packaging waste streams in retail, consumer, and industrial sectors.


Material Characteristics: Designed for durability, protection, and costeffective packaging solutions.

Implications for Recycling

- Requires disassembly of layers & adhesive removal
- Processed pulp repurposed for rigid packaging materials

CARDBOARD

03-06-2025

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

MAGAZINES AND CATALOGUES

Purpose: Designed for visual appeal and advertising. **Paper Quality:** Often glossy and high-quality for enhanced aesthetics.

Grouping: Sometimes classified alongside office paper but distinct in production.

Production Process: Involves substantial coatings and heavier printing inks.

Usage: Commonly used for promotional materials, fashion publications, and commercial catalogues.

Implications for Recycling

- Rich fibre source if de-coating & de-inking applied effectively
- Requires additional processing compared to plain office paper

MAGAZINES AND CATALOGUES

Contamination **Print Quality Visual & Tactile Fibre Quality Enhancements Risks Properties** Coatings & Adhesives, Uses pulps Glossy finish treatments binding agents similar to office enhances & high-quality improve image paper but display & printing inks reproduction includes glossy readability coatings Requires Must be thorough **De-coating** •Complicates carefully cleaning & required to removed to fibre liberation restore fibre removal during pulping preserve fibre usability processes integrity

MIXED OR UNSORTED WASTE PAPER

Definition: Mixed waste paper consists of unsorted paper materials. **Variety of Contents:** Includes documents, packaging materials, junk mail, catalogues, and miscellaneous paper types.

Sorting Process: Not pre-sorted at the source, leading to varied composition.

Recycling Challenges: Municipal recycling programs handle large volumes of these mixed waste streams.

Implications for Recycling

- Represents a significant resource despite challenges
- Advanced sorting & de-inking technologies essential for circular economy sustainability

03-06-2025

http://www.ner.ie/wp-content/uploads/2013/07/Soft-mix-paper.br

MIXED OR UNSORTED WASTE PAPER

Heterogeneous Composition

Diverse paper types (documents, packaging, catalogues)

Variability in fibre type, coating, ink content & paper quality

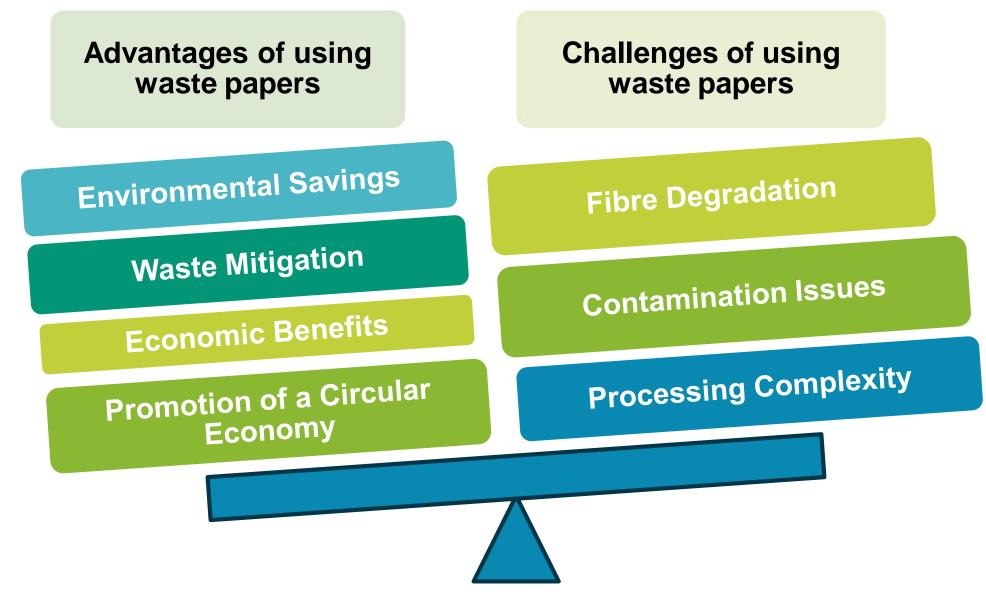
Processing Complexity

Sorting requires mechanical/opti cal systems for material separation

•Advanced facilities extract high-grade fibres from lower-grade waste

Contamination Risks

High levels of non-paper materials (adhesives, foreign objects)


Thorough removal processes needed for pulp recovery **Fibre Quality**

Variable fibre length & properties due to mixed sources

Blending with consistent fibre sources improves final paper characteristics

00-00-2020

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

03-06-2025

Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

COMPARATIVE ANALYSIS

Aspect	Wood	Agro-Waste	Waste paper
Availability	Reliable from managed forests; regional dependencies	Abundant in agricultural regions; widely available as byproducts	Plentiful because of high paper consumption;
Cost	Moderate to high; extraction and management costs	Generally low-cost due to its byproduct status	Low-cost raw material, though processing can add expenses
Durability	Excellent strength (especially softwood fibres); consistent properties	Variable; some agro- residues offer competitive strength, others require blending	Fibre degradation occurs with each recycling cycle; often blended with virgin fibres
Environme ntal Benefits	Sustainable agro-forestry mitigates deforestation, preserves biodiversity, and maintains carbon sinks	Reduces air pollution from burning, decreases landfill burden, and provides revenue for farmers	Conserves forests, lowers environmental impact through recycling
Challenges	Sustainable harvesting and the high energy/chemical demands of traditional pulping methods	Additional chemicals or energy for processing; fibre variability, need for specialized pretreatment processes to ensure consistent pulp output	Degradation over multiple recycling; contamination issues, fibre weakening, and complexity of processes.

COMPARISON OF MORPHOLOGICAL TRAITS OF RAW MATERIALS

Category	Wood Pulp	Agro-Waste	Wastepaper
Fibre Length and Uniformity	Softwood: long & consistent; Hardwood: shorter but uniform', Longer fibres, with well-oriented microfibrils (especially typical in softwood), contribute to higher tensile strength	Shorter and more variable; non-cellulosic inclusions (e.g., silica) present	Shorter and fragmented; altered surface characteristics due to recycling, may compromise bonding and strength.
Cell Wall and Lumen Characteristics	Thick/thin walls based on species; well-defined lumens for fluid balance	Looser cell walls; larger/irregular lumens with high variability	Thinner walls; partially compromised lumens with remnant contaminants
Surface Fibrillation and Damage	Varied fibrillation; smoother surfaces from gentle chemical treatments	Processing-induced fibrillation for better bonding; less naturally fibrillated	Higher fibrillation and damage; rough surfaces from recycling stresses

03-06-2025

FIBRE DIMENSIONS OF VARIOUS RAW MATERIALS

											on oth In	iorono)		Diamotor	Imioron		
		Length (Diamete	r (micron	s)				ength (m	· · · · ·		Diameter	`	-	
	Fibre	Max	Min	Avg	Max	Min	Avg	L/D		Fibre	Max	Min	Avg	Max	Min	Avg	L/D
	source							Ratio		source							Ratio
Wood	Coniferous	3600	2700	3000	43	32	30	100:1	Stalk fibre	es							
	(softwood)								Canes	Sugarcane	2800	800	1700	34	10	20	85:1
	Deciduous	1800	1000	1250	50	20	25	50:1		bagasse							
	(hardwood)									Bamboo	3500 -	375 -	1360 -	25 - 55	3 - 18	8 - 30	135 -
Non-wo	ood									(wide range)	9000	2500	4030				175:1
Bast fit	ores								Cereal	Wheat, rye,	3120	680	1480	24	7	13	110:1
	Common	55000	5000	20000	50	16	22	1000:	straw	oats, barley,							
	(industrial							1		mixed							
) hemp									Rice	3480	650	1410	14	5	8	175:1
	Jute (1)	4520	470	1060	72	8	26	45:1	Grasses	Esparto	1600	600	1100	14	4	9	120:1
	Jute (2)	5000	500	2000	68	8	20	100:1		Lemon			1320			9	145:1
	Kenaf	7600	980	2740			20	135:1		Sabai	4900	450	2080	28	4	9	230:1
	Oilseed	45000	10000	27000	30	16	22	1250:		Switchgrass			1370			12.5	110:1
	flax tow							1	Reeds	Addar grass			1180			15	78:1
	Textile	55000	16000	28000	28	14	21	1350:		Papyrus	8000	300	1500	25	5	12	125:1
	flax tow							1		Nal	3000	100	1500	37	6	20	75:1
Core fil	ores								Stalks	Corn	2800	680	1260	20	10	16	80:1
	Kenaf	1100	400	600	37	18	30	20:1		Cotton	2000	700	860			19	45:1
Leaf fib	ores									Grain			1650	80	30	47	35:1
	Abaca	12000	2000	6000	36	12	20	300:1		sorghum							0011
	Sisal	6000	1500	3030			17	180:1		Hesperaloe			3200			15	213:1
Seed h	ull fibres				•				Sources:								
	Cotton	50000	20000	30000	30	12	20	1500:	Hurter,	Robert W., "A M., "Utilization of An	Agricultural	Residues",		1997 Nonwo			Course.
	staple							1		Pulping Progress R		0				апи гарег,	
	Cotton	6000	2000	3500	27	17	21	165:1	https://www	v.paperonweb.com/A	rticles/plant_	fibre_characte	ristics.pdf				
	linters ⁻²	2025 Ra	aw Materi	als as a S	ource of F	- ibres for	Paper-r	makina:	Wood. Aaro	-waste. and W	/aste Par	oers, Path	nak & Sha	arma	2	9	
lihters ⁵⁻²⁰²⁵ Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma																	

CHEMICAL PROPERTIES OF VARIOUS RAW MATERIALS

	Fibre Source	Alpha Cellulose (%)	Lignin (%)	Pentosa ns (%)	Ash (%)	Silica (%)		Fibre Source	Alpha Cellulose (%)	Lignin (%)	Pentosans (%)	Ash (%)	Silica (%)
	Coniferous (softwood)	40 - 45	26 - 34	7 - 14	1	<1	Stalk Fibres						
Vood		38 - 49	23 - 30	19 - 26	1	<1	Canes	sugarcane bagasse	32 - 44	19 - 24	27 - 32	1.5-50	.7 - 3
lon-wood								bamboo	26 - 43	21 - 31	15 - 26	1.7 - 5 1	.5 - 3
Bast Fibre	S						Cereal	barley	31 - 34	14 - 15	24 - 29	5-7 3	- 6
	Jute (1)	39 - 42	21 - 26	18 - 21	0.5 - 1	<1	straw						
	Jute sticks (whole jute)	43						oat	31 - 37	16 - 19	27 - 38	6-8 4	- 7
	Kenaf - bast	31 - 39	15 - 18	21 - 23	2 - 5			rice	28 - 36	12 - 16	23 - 28	15 - 20 9	- 14
	Kenaf - core	34	17.5	19.3	2.5			rye	33 - 35	16 - 19	27 - 30	2 - 5 0	.5 - 4
	Oilseed flax		23	25	2 - 5			wheat	29 - 35	16 - 21	26 - 32	4-9 3	- 7
	tow				- •		Grasses	Addar	29 - 33	21	28 - 32	4 - 6 1	.1 - 1.3
	Textile flax	50 - 68	10 - 15	6 - 17	2 - 5	<1		grass esparto	33 - 38	17 - 19	27 - 32	6-8 2	- 3
_eaf Fibres	tow							sabai		17 - 22	18 - 24	5-7 3	- 4
	Abaca	61	9	17	1	<1		switchgras		34 - 36	22 - 24	1.5 - 2	
	Sisal	43 - 56	8-9	21 - 24	0.6 - 1	<1	Reeds	Nal	45	22	20 sitish of unal	3 2	
Seed Hull I							Note: For well different with r						
	Cotton staple	85 - 90	3 - 3.3		1 - 1.5	<1	Sources: Hurter, Robert Hurter, A.M., "						
	Cotton linters	80 - 85	3 - 3.5		1 - 1.2	<1	Pulp and Pape https://www.pa	r", Nonwood I	Plant Fibre P	ulping Prog	gress Report #	19, TAPPI	

03-06-2025 Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma

PULP FIBRE MORPHOLOGY: HARDWOOD

•Fibre Length	 Shorter fibres (0.5–1.5 mm) create a smoother & more uniform paper surface Helps form dense & well-bonded sheets
•Fibre Width & Wall Thickness	 Thinner cell walls & narrower fibre width compared to softwoods Offers flexibility but lower strength relative to softwood fibres
•Lumen Characteristics	 Smaller lumens reduce porosity Enhances printability & brightness of paper
 Surface Fibrillation 	 Smoother surface due to less fibrillation Ideal for printing & writing applications requiring high-quality finishes

PULP FIBRE MORPHOLOGY: SOFTWOOD

•Fibre Length	 Long fibres (2.0–4.0 mm) enhance tensile strength & tear resistance
•Fibre Width & Wall Thickness	 Moderate width (20–50 µm) with thick cell walls Strong wall-to-lumen ratio ideal for high-strength applications
•Lumen Characteristics	 Large lumen aids in absorption of bonding additives & water Influences paper formation & structural integrity
•Surface Fibrillation	 Mechanical pulping increases fibrillation; chemical pulping maintains smoothness Degree of fibrillation affects bonding potential & fibre coherence
03-06-2025	32

PULP FIBRE MORPHOLOGY OF AGRO-WASTE									
•Fibre Length	 Shorter and more variable in length than wood fibres Bagasse: 0.5–2.0 mm, straws display broad size distribution 	•Surface Fibrillation	 Less natural fibrillation, but refining & chemical pretreatment improve bonding 						
•Cell Wall Composition & Thickness	 Thinner cell walls compared to wood fibres Presence of silica/minerals affects flexibility 		 Significant variation in fibre dimensions & 						
		•Morphologica	textures across different crops						
•Lumen Size	 Larger or irregular lumen due to loose anatomical structure Leads to increased water retention & porosity in paper 	I Variability	 Requires specialized processing for consistency in papermaking 						
05-00-2025	Raw Materials as a Source of Fibres for Paper-making: Wood, Agro-waste, and Waste Papers, Pathak & Sharma 33								

	MORPHOLOGY OF W	ASTEPAPER	FIBRES			
•Fibre Length	 Shorter than virgin wood and agro-waste fibres Degraded by repeated mechanical & chemical treatments 	•Contaminant s & Residuals	 Presence of inks, adhesives, fillers affecting water absorption & bonding 			
•Fibre Surface	 Recycling reduces smoothness, increasing fibrillation Enhanced surface fibrillation, 		 De-inking & cleaning aim to minimize residuals Mixture of different paper 			
•Cell Wall	 bonding, degradation Thinner cell walls compared to virgin fibres 	•Heterogeneit y	 grades leads to variability Inconsistencies in fibre dimensions influence paper quality 			
Thickness & Lumen	 Lumen may be collapsed or occluded by residual contaminants 					

03-06-2025

CONCLUSIONS

- ✓ Traditional backbone of papermaking
- Provides consistent
 strength and predictable
 performance
- Sustainability depends on forest management, agroforestry & certifications

 Reduces environmental
 burden and supports circular economy ✓ Low-cost and widely available raw material ✓ Challenges: fibre degradation, contamination, and heterogeneity ✓ Requires advanced deinking, refining, and blending with virgin fibres

- Abundant and renewable alternative using agricultural byproducts
- Cost-effective and promotes resource efficiency & circular economy
- Variable fibre length & mineral content require specialized treatments
- Standardized processing techniques needed for quality control

03-06-2025

Thank You.....