RECYCLED FIBER MANUFACTURING FOR PAPERMAKING – AN OVERVIEW

Prof. Ramjee Subramanian Dept. of Paper Technology IIT-Roorkee 05 June 2025

Recycled Fiber Manufacturing for Papermaking – History

- Recovery, Recycling, and Reuse started in 1600 s to early 1700s
- Industrialization and Innovation fueled growth of recycling centers
- Recycled Cardboard Boxes product: early 1990s
- 20th Century: Awareness on sustainability Recycled Pulp MAJOR **Raw Material**

Recoverd Paper

- Recovered Paper (RP) Global Amount: 277 m tons & Utilization Rate: Over 60%
- India 70 70% paper and board is based on RP as raw material
- India RP: 20 m tons/a requirement & 40% imported
- TYPE: Mixed Grades, OCC, ONP&OMG, High grade deinking pulp substitutes

Recovered Paper Recylability

- Recycling : Pulp can be allowed 25 cycles of reuse without any problems
- Good recyclability: Begnin Chemicals usage, minimal/no impact on water loops, ease of processing, and non-harmful residues
- Food Contact: No risk to consumer health
- Separation of ink & adhesives through mechanical processing

- **Types:** Household and Industrial/business systems
- Industrial: clean, easy to arrange, homogeneous, and economical
- Systems: pre- and post: consumer waste

India:

Industrial – Houses, print press, book & manufacturing Post Consumer (95%): informal, door collectors/vendors, not organized

ferent recovery systems in Germar

SOURCES C		2002	2000	1998	
Sources	Ę	55.7 % 44.3 %	54.1 %	50.4 %	
HOUSEHOLD		11.0 /0	40.0 /0	49.0 70	
Items collected Old newspapers,		38 %	41 %	47 %	
Collected by		51 %	47 %	39 %	
Weekend hawkers		4 %	5 %	6 %	
		/ %	7 %	8 %	

India

OF WASTE PAPER COLLECTION

Automated Steps for Efficient Sorting

uap technique (vertical adjustment)	Paper spike	Air separator	Colour sensor	CMYK sensor	NIR sensor	
X X	Х	X X	Х	Х	X	

Materials and Separation

Automation: Sorting

Performance– Collection & Sorting

	Manually	Coarse screen	Fine screen ¹	Gap technique for fine screen ¹	Deinking screen ^{II}	Paper spike ^{II}	Shredding and air stream sorting ¹
Generated RP grades [™]	1.11 1.04 1.02	1.04	1.02/ 1.02+	-	1.04	1.04 (1.02)	1.11 1.02
Effectiveness in %"	-	90-95	90-95	-	n/a	n/a	85-90
Content of 1.11 in the separated fraction in %	-	5–15	50-80	-	2–5	> 10	25-30
Throughput in t/h	0.5	6-30	6–30	-	< 15	7-11	12
Throughput of the subsequent manual sorting in $t/(p^*h)^{\vee}$	-	1.2	> 1.2	-	1.5	3–8	Not to

Is only valid with prior coarse separation

Is only valid with prior coarse and fine separation
 Refers to the components that should be removed
 Refers to the fractions that are separated from the main product stream of the sorted graphic paper for deinking (1.11)
 Tons per person and hour

Recovered Paper – Quality

General:

Moisture Content (EN 643: Moisture < 10%) Ash content and Schopper – Rieger Value Composition

Brown Paper: Non-paper components, composition, handsheet characteristics

<u>White grades: Non-deinkable paper and board components, composition</u> and age, optical characteristic

Recovered Paper – Storage

Recovered Paper – Recyclability

<u>Good Recyclablitiy</u> –

- Non-Paper Components Low proportion
- Unwanted materials (Inks)
- Benign Chemicals
- Ease of processing
- Environmentally friendly (sludge/residues)
- Food stuff no risk of contaminants
- Removable adhesives
- Repulpability wet-strength papers challenging

Recyclability Deinkahilitv

Deinkability Score

- Offset 81%
- Gravure > 90%
- Dry Toner: > 90%
- Ink Jet: Speciality>Pigments>dyes>UV – Cured
- Solid Inks > 80%

Stickies Removal

- Mechanical screening
- Size Dia: 1000 to 100,000 μm

κεсусіаріїту - υπιτ **Operations**

Fluid Mechanics – Pulp Suspensions

Recyclability - Separation Processes

Basis – Mass balance

Water (W) Pulp (P)

Schematic Sankey diagram of a separation process.

Recyclability - Separation Processes

Recyclability - Fractionation Processes

Recyclability - Separation - Substances

ARTICLE SIZ	E [μm] 001 0.0	01 0.	1 1.0	10
	Molecular range	Macromole range	ec. Colloidal particles	I
	not visible			
	8 	1. I. A. 1.		
Metal ions Sulfates Chlorides	Lignin fragments	Carbon black	Fillers Ink p Coa	articles ting particles
Monosa	ccharides	Poly- and oligosacch	Coating pigm arides	nents
	Surfactants	Extractives	Bacteria	ses Wax Micro

Substances in recycled-fibre processing.

Separation Processes - Classification

Process	Principle	characteristics utilized for	Remarks
Screening	Passage through apertures (Typically small slots or holes) and separation of passing particles from retained particles. Some screening methods involve circular motion or vibrations to aid separation process.	Size, form and shape, deformability	 Type of screens: Based on contaminants (Pressure, Coarse, and Fine) Separation Technology: Pressure, Rotary, wibrating, and centrifugal
Centrifugal Cleaning	Acceleration in centrifugal field and separation of heavy - weight from light- weight fraction	Specific gravity, size and shape	Decanter Centrifuge Disc stack Centrifuge Scroll Separators Hydrocyclones
Flotation	Attachment of hydrophobic particles to air bubbles and separation of foam Probability based stages – collision, attachment, stability, and transport with foam	Surface properties and size	Variable features in flotation cells: aeration stages, type of air supply, foam removal methods, secondary flotation stage, closed or open cells, cell design and arrangement
Washing Fractionation	particles through small apertures (typically wire See screening	size Size, geometry (length), flexibility	pressure filter, Twin wire press, Screw press, and

moval in recycled fibre processing.

Efficiency ranges of unit processes for contaminant

Specific energy consumption in recycled-fibre processing.

Unit process	process Specific energy demand [kWh/t]	
Slushing pulper	10-40	3–18
Drum pulper (screening)	15-20/40	3.5 - 20/(3.5-6)
Deflaking	20–60	3–6
Screening	5–20	0.5-4
Tailing screen	20-40	1-4
Washing	1.5-20	$0.7-1.5 \Rightarrow 5-12$
Dissolved air flotation (DAF)	10-20	$< 0.3 \Rightarrow 0.01$
Flotation (selective)	20-50	1-1.3
Centrifugal cleaning	4-8	< 0.5–4.5 (< 6)
Thickening	1-10	0.5 ⇒ 5 (10)
Dewatering-Screw press	10-15	$4-10 \Rightarrow 25-40$

Consistency	ranges	and
-------------	--------	-----

eration	Pulping	Screening	Centrifugal	Bleaching	Rofi	
g		Cleaning		Dicaching	nen	
consistency	< 6 %	< 1.5 %	< 1.5 %	-	3%	
mediate consistency)	-	1.5 % - 2.5 %	1.5 % - 3 %		0 10	
dium consistency)	< 12 %	2.5 % - 6 %	-	10 % - 15 %	10 %	
n consistency)	< 19 %	-	3 % - 6 %	25 % - 35 %	28 %	

Separation Processes -Specific Energy & Consistency

Specific energy consumption and operating consistency of unit processes

their different naming in various process stage

Recyclability -Stock Preparation (Testliner)

Overview of pulper and drum pulper applications, design features and operating modes.

Type of	F	eed	Operating conditions					Machine characteristic			eristics	
pulper	Furnish	Condition	Consis- tency [%]	Cap min [t/d]	acity max [t/d]	Slushing time (total) [min]	Operation	Axis	Effective element	Circumf. speed [m/s]	Screening sieve	Pulper diameter [mm]
HC pulper	News Maga- zines	Loose Dewired bales	<19	30	400	1525	Batch	Vertical	Helical rotor	12–16	No (yes)	<7 100
MC pulper	News Maga- zines	Loose Dewired bales	<12	140	500	20–30	Batch	Vertical	Helical rotor	13–17	No (yes)	<6 000
LC pulper	Fluting Liner High wet strength grades	Loose Opened bales	<6	200	1 600	5–40	Contin. (ragger, Junk separator)	Vertical Horizontal Inclined	Flat rotor with vanes	15–20	Yes	< 8 000
Drum pulper	News Maga- zines Fluting Liner	Loose	<20 (<5)	100	1 600	20–40	Contin.	Horizontal	Drum	1.5–2	Yes (drum)	<4 250

Recyclability -Pulping

Recyclability -Deflaking

Flake reduction of wet-strength grades by mechanical, mechanical-thermal, and combined mechanical-thermalchemical treatment.

Recyclability -Screens

Types: Coarse/fine; Disk/cylindrical; flow type

Recyclapility - Separation -Screens

Recyclability - Separation -Cleaner

		-	~
		Ŀ	,
		Е	
		-	

iner type racteristic erred flow iple istency rand ughput per ier . energy umption/sta sure drop – accept ox. g-facto th

eter (max) t opening t rate ass/stage t discharge inal stage) t thickenin inal stage) stage reject arge

pecial cases

C		HC CI	eaner	MC Cleaner	LC Cleaner		
		with rotor	without rotor	the second second second	HW	LW	
	-	Countercurrent	Countercurrent	Countercurrent	Countercurrent	Unidirect	
ge	%	2-4.5 (6)	(1–5) 2–6	1–2	0.5–1.5	0.5–1	
	$\frac{1}{\min}$	100-10 000	80–10 000 (20 000)	600–3 000 (10 000)	100–1 000 (2 000)	100–5 (5 00	
age	kWh t	0.5–3	0.5–3	1–4	2–10	2-50	
	bar	0.1-1.0	0.4-2 (3)	1–2	0.7–2 (4)	0.8-	
r	-	< 60	< 60	< 100	< 1 000	< 1 00	
	mm mm mm	3 000 300–700 80–120	2 000–5 000 100–500	3 000–5 000 100–700 40–80	75–300 10–40	110–4 40–6	
	%	0.1–1.0	0.1–1.0	0.1–1.0	5–30	3–20 (0.2)	
е	-	Batch / continuous	Batch / continuous	Continuous / Batch	Continuous	Continu	
g	-	-	-	()	1.5–7	0.2-1	
ct	-	(if any) Batch	(if any) Batch	Batch	Continuous / Batch	Continu	

Primary features of cleaners for various pulp consistency ranges.

Recyclability - Separation -Flotation

Dissolved Air Flotation -Principle

Recyclability - Flotation – Particle Size

rocesses involved in dewatering.

	Dewatering/Washing						
orocess	Solid/liquid separation	Solid/solid separ					
	Increasing consistency	Fractionation (partic					
	Enabling next process step Loop separation Web (sheet forming)	Fines/ash vs. Fibres					
	Filtration Pressing	Filtration (Pressing)					
	No solids in filtrate	High particle size Separation purity					
lchinery	Disk filter Belt filter Twin wire press	Washer Recovery filter					

Recyclability -Dewatering – Processes

Recyclability -Dewatering – Operating Conditions

conditions al conditions

Operating conditions of different types of dewatering machine.

ra	ange	[%]		Dewatering by			
1	Outlet	:					
	10-20	20-> 30	Separation efficiency Solids/liquids	Gravity	Vacuum	Wire pressure	Dunninn
			\rightarrow				
			\uparrow				
			\rightarrow				
			\rightarrow				
			\rightarrow				
			И				
			7				

\uparrow	Good
\rightarrow	Average
J.	Poor

Flotation

Chemistry

Chemicals:

Fatty Acid Triglyceride Silicates Ethoxylated fatty acids

Flotation Chemistry-Ink Removal

Recyclability -Flotation -Defoamer

DIP - Bleaching - Brightness

Chemicals: Peroxide, Dithionate, FAS, Oxygen, hypo, ClO₂
Single/Multiple

		Sedimentation	Filtration	Dissolve
	ime rades changing	big big low	very low very low big	
Rocyclahility -	t o load kicks rvice	moderate low low	no Iow Iow	m
Motor Trootmor	o disturbances iciency	low	low	m
vvalet freatmer	Long fibers Short fibers	good good	very good moderate	ve
	quality [mg/l]	very good 10–100	moderate 10–300	m 1
	n of reject [%]	1-2.5	very big 8–30	m
	costs umption	low very low	moderate	m
	onsumption	low	low	m

Recycled Pulp Manufacture – Layout Design

RULES TO PRACTICE

1. Combine Process Steps with Similar consistency 2. Lay out preferable with decreasing consistency 3. Efficiency – Particle size & Fragmentation 4. Avoid – "Separation Gaps" 5. Combine – Separation with different active principles 6. Optimization (Unit) – Separation efficiency and yield 7. Standardize

DIP – Layout Design – Newsprint/SC/LWC

DIP -LAYOUT DESIGN -MARKET PULP

Recycled Pulp Manufacture – Design for Success

Key Design data	Capacity Yield Type/variety of RCF gr		
Runnability	Operational availabilit		
General Targets	Specific effluent volun Overall specific ene power)		

rade to be used

cy (over time)

ne

rgy demand (heat,

