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Abstract:
This paper explores AI’s role in revolutionizing the pulp and paper industry, explicitly 
predicting Wet Tensile Strength (WT) for specialty-grade papers. A 90-day study achieved 
a 15% chemical dosage reduction and an 80% decrease in Wet Tensile standard deviation. 
The real-time dosage prediction led to optimizing the Wet Strength Resin consumption and 
improved process stability. The self-learning models exhibited adaptability to changing 
variables, ensuring their robustness. Overall, this study highlights AI’s transformative impact 
on efficiency, cost savings, and consistent product quality within the dynamic landscape of 
papermaking. The approach used for wet-strength optimization has been used to optimize 
other aspects of pulp, paper and packaging production. 

Keywords: artificial intelligence, machine learning, process control, standard deviation, wet 
tensile strength, chemical dosing, product quality and consistency, papermaking.

Application of AI-based Approach  
in Paper Making Process

Introduction

The pulp and paper industry has a rich history spanning over a century. The initial processes 
were designed based on the assumption of abundant resources and limited technological 
advancements. However, as time has progressed, both the availability of resources and the 
technological landscape have undergone significant transformation. With growing economic 
pressures and sustainability concerns, industries worldwide, including pulp, paper, and 
packaging, are re-evaluating traditional practices to improve efficiency and reduce resource 
consumption.

In today’s competitive landscape, reducing energy, water, and raw material consumption is no 
longer just an option but a necessity. The increasing market competition, price fluctuations, and 
heightened environmental consciousness have compelled industries to find innovative ways to 
optimize operations. As a major consumer of energy and water, the pulp and paper industry is 
actively seeking new strategies to enhance efficiency, maximize output, and minimize waste.

One of the most promising advancements in this pursuit is the integration of cutting-edge 
technology. The industry is progressively embracing automation, alternative raw materials, 
and continuous process innovations. Among these technological advancements, artificial 
intelligence (AI) and machine learning (ML) have emerged as key drivers of Industry 4.0[1]. 
AI harnesses the vast amounts of data generated by manufacturing processes, unlocking 
insights that were previously difficult to interpret. By leveraging AI-powered analytics, mills 
can optimize production, reduce operational costs, enhance product quality, and improve 
supply chain efficiencies.

The adoption of AI is no longer just an advantage—it is becoming a critical enabler for 
sustainable and cost-effective manufacturing. As the industry continues to evolve, embracing 
digital transformation will be fundamental to staying ahead in an increasingly resource-
conscious and competitive world [2].

AI AND PAPERMAKING

Papermaking is a process of juggling between large number of variables that impact the 
paper machine’s efficiency and the product’s final quality. Whenever there is a variation, the 
challenge is to identify the cause and devise strategies to prevent such deviations in the future. 
One must analyze vast data sets to be able to conclude.

Traditionally, most of this data was collected via lab tests at predefined intervals. There was 
a need for a subject matter expert who could then comprehend and correlate data via manual 
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calculations or fundamental statistical analysis to derive the trends 
and sources of variation. However, this is not enough to control the 
complex papermaking process [3].

Today, real-time data can be collected and analyzed with the 
development of online, continuous sensors. Analyzing the relationship 
between variables and proactively controlling them to achieve the 
desired result would help unleash the industry’s full potential [4]. 

The papermaking process involves numerous variables that constantly 
fluctuate, making it a dynamic rather than a theoretically ideal process. 
Merely optimizing each variable within a defined range without 
considering the intricate interrelationships may prove ineffective [5]. 
Unlike statistical analysis tools that rely on predefined assumptions 
and models, artificial intelligence (AI) utilizes advanced algorithms, 
specifically machine learning and deep learning, to autonomously 
discern patterns and relationships within high-dimensional, 
unstructured datasets. This capability is crucial for capturing complex, 
non-linear relationships inherent in papermaking. Real-time analysis 
of these dynamic processes, accounting for variations in raw material 
qualities such as recycled paper and water, yields optimal results. AI 
models, adaptable and capable of learning from new information, 
provide a dynamic and evolving solution. The automation features 
of AI streamline the analysis process, reducing the need for manual 
intervention and expediting decision-making.

METHODOLOGY:

AI controlled Wet-Strength Resin addition

This paper centers on the predictive control of final product properties 
by utilizing real-time processes and quality parameters from Data 
Historian. Wet Tensile Strength, indicates the force paper can withstand 
after exposure to moisture - a critical property for specialty grades.

A 90-day study was conducted at a specialty paper manufacturing 
facility. More than 20 different grades with a basis weight ranging 
from 40 - 100 g/m2 were produced on a machine with a production 
capacity that ranges from 80 to 90 tons per day and a machine speed of 
325 – 375 m/min. The filler content varied within the 20 - 40% range. 
The primary objective of this program was to achieve a considerable 
reduction in chemical dosage and to significantly reduce the standard 
deviation in the wet tensile strength measured in the lab. 

Haber’s eLIXA® Mt. Fuji was leveraged to achieve the objective. 
eLIXA® Mt. Fuji acted as a platform to bring together process and 
quality parameters from across the plant and analyze in real time. A 
custom ML model was built to predict the required WSR dosage.

The chemical dosing was then controlled automatically to intervene 
and take proactive action. As a result, the variability from the target wet 
tensile was significantly minimized, with optimum chemical dosage, 
leading to better quality output at minimal cost. 

Data Extraction and Cleaning

Data for 100+ process parameters for a six month period was systematically 
gathered.  The data collected was from various sources, such as machine 
process parameters and lab data via historians and sensors.

Subsequently, a data cleaning process was done to eliminate 
inconsistencies and errors. This involves removing duplications, 
identifying and excluding unwanted outliers, and thoroughly checking 
for missing data. Following the data cleaning phase, the data set was 
split into training and testing data subsets to enable model-building.

Multivariate Analysis and Model Building

Multivariate data analysis was conducted to understand the correlation 
among these variables. The goal was to pinpoint the significant drivers 
among the extensive list of 100+ variables influencing the wet tensile 
strength. After several iterations, we could identify 14-17 variables as 
key influencers. 

Feature engineering was undertaken with the help of subject matter 
experts and correlation analysis, which takes raw data and transforms 
it into features usable for predictive model construction. It can 
significantly improve model performance by making key patterns in 
the data more accessible to the algorithm. Say, one need not look at 
both load and energy power of the refiner.  They could be combined 
and looked at together giving better insights to the model. To select 
from the features which showed multicollinearity, mutual information 
score was calculated with respect to the target, and features influencing 
the target were selected. Additionally, the collinearity identified in the 
data set was removed. The primary key influencing variables were 
sheet ash, pH, grammage, WSR dosage, etc. 

Grades were also grouped together to create a larger data set for 
model building. The grades which are rarely run may not generate 
sufficient data to create models independently but can be grouped 
with grades that run over larger period. 20 grades were grouped into 
4 different groups, helping in the model building process.

The data set was split into training and testing data subsets to enable 
model-building. The significant variables were then subjected to 
further regression analysis to identify a relation with Wet Tensile 
Strength and to develop models predicting the same.

Model evaluation

Different models are developed via Support Vector Regression 
(SVR), K-nearest Neighbors (KNN), Linear regression, etc. These 
are then tested on a testing dataset and assessed using metrics such 
as R-square and Root Mean Square Error (RMSE) values. This 
evaluation aimed to identify the model that exhibited the closest 
correlation with the Wet Tensile strength values obtained through lab 
testing. In other words, the model that best explains the relationship 
between the variables and wet tensile value was selected.

After evaluating and finalizing the Wet Tensile Prediction models, a 
WSR dosage prediction algorithm was developed for real-time dosage 
predictions across all grades. This algorithm predicts the accurate WSR 
consumption required to achieve the Target Wet Tensile, considering 
the real-time variations in the machine process parameters.

Models were then deployed and integrated with deployment codes. 

RESULTS

Lab vs. Predicted Wet Tensile Strength 

The first step in evaluating the effectiveness of the model is to assess 
its accuracy in predicting wet tensile strength. The confidence in the 
model’s predictive capabilities is established by analyzing its R-square 
(R²) value, which serves as a key statistical indicator of the correlation 
between the predicted and actual wet tensile strength values. In this 
case, the model achieves an impressive R² value of 0.94, indicating a 
strong alignment between predicted and observed results.

An R² value close to 1 signifies a high level of predictive reliability, 
demonstrating that the model effectively captures the underlying 
relationships between variables influencing wet tensile strength. The 
closer this value is to 1, the more precise the model’s predictions 
are, as it accounts for the majority of variations within the dataset. 
This high accuracy ensures that the model can be confidently used for 
process optimization, enabling better control over wet tensile strength 
and minimizing deviations in the papermaking process.

 Additionally, in Fig 1, the model demonstrates a notable consistency, 
with 95% of the variation between the lab wet tensile strength and 
predicted wet tensile strength falling within the range of -1 to 1. This 
tight correlation indicates the reliability and precision of the model in 
replicating the lab-derived wet tensile strength values.

Anurag Dhiman, Saurabh Kolekar, Shraddha Chaudhary and Shrinivasprasad Ankeyawar



[ 82 ]

Fig 1: Agreement between the model predicted and lab  
value of wet tensile strength.

and the variations in machine parameters. During the preceding year, 
Grade 1 had an average WSR consumption of 27.28 kg/ton. However, 
through the AI model implementation phase, a reduction in average 
WSR consumption was observed, which dropped to 23.42 kg/ton 
while maintaining the wet strength. Real-time dosage control helps 
to reduce over dosing. 

A key advantage of this AI-driven approach is its ability to predict 
the resulting wet tensile strength before resin is dosed, allowing 
operators to make informed dosing decisions. Traditionally, to 
mitigate the risk of falling below the required strength parameters, 
manufacturers often maintained excess resin dosing as a safety 
buffer. This practice not only led to higher operational costs but 
also introduced potential issues related to over-application, such as 
runnability concerns or residue buildup.

With AI-based predictions, the process is now proactively adjusted 
rather than reactively corrected, meaning resin dosage is applied only 
as needed, ensuring both cost efficiency and product consistency. 
This data-driven approach enables manufacturers to confidently 
meet wet strength targets while simultaneously reducing 
chemical consumption, improving sustainability, and optimizing 
production economics.

An added advantage of this model is its self-learning. It continuously 
learns from the changes in the variables and the relationship between 
them and incorporates them into the prediction. This makes it a robust 
solution that adapts to process changes.

Product Quality

Table 1 provides a comparative analysis of the baseline data for Grade 
1 with a basis weight of 45 g/m², collected over a one-year period 
before the implementation of AI-driven process optimization and 
after the integration of AI into the manufacturing process. Grade 1 
was selected for evaluation as it experienced the maximum production 
run on the machine during the AI model implementation, providing a 
robust dataset for comparison and validation.

For this specific product, the target Wet Tensile Strength (WT) was 
set at 10.5 N/15mm. Analyzing the historical data from the preceding 
year, the baseline Wet Tensile Strength averaged 10.28 N/15mm, 
with a standard deviation of 0.46 N/15mm. This level of variation 
suggested inconsistencies in achieving the desired wet tensile 
strength, leading to potential fluctuations in product quality.

Following the deployment of real-time AI-driven dosage prediction, 
significant improvements were observed in process stability and 
output consistency. The standard deviation of wet tensile strength was 
reduced to 0.12 N/15mm, marking an impressive 73% reduction in 
variability (as illustrated in Fig. 2). This enhancement was primarily 
achieved by dynamically adjusting the wet strength resin dosage in 
real time, rather than relying on a fixed set point for chemical dosing.

By continuously analyzing process parameters and predicting wet 
tensile strength in real time, the AI model ensured that the target 
wet tensile value was consistently met. This not only improved 
the overall product quality and uniformity but also minimized 
wastage, optimized chemical usage, and enhanced operational 
efficiency. The ability to reduce variability while maintaining target 
specifications underscores the value of AI in driving precision and 
reliability in paper manufacturing processes.

Conclusions:
In conclusion, this paper underscores the pivotal role of AI in 
revolutionizing the pulp and paper industry using an example of 
predicting and controlling Wet Tensile Strength in specialty-grade 
paper production. The results of the 90-day study illustrate the efficacy 
of AI in achieving a 15% reduction in chemical dosage and an 80% 
decrease in the standard deviation of Wet Tensile Strength. As the 
pulp and paper industry continues its trajectory towards sustainability 
and efficiency, the integration of AI emerges as a transformative 
force, offering a potent toolset for proactive decision-making, cost 
savings, and improved product quality. Even though an example of 
Wet Strength optimization was presented in this paper, AI-driven 
technology can be used to optimize any chemical or mechanical 
operation on the paper machine, including (but not limited to) such 
applications as retention, drainage, dry strength, sizing, and refining.  
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 Target WT (N/15mm) Mean Standard 
   Deviation
  Fig.2 (a) Baseline (past one year) 10.5 10.28 0.46
  Fig.2 (b) Autonomous Control 10.5 10.49 0.12

Fig 2: Wet tensile before and 
after AI-optimization 

Table 1: Baseline data for Grade 1

Fig. 3 WSR consumption before and after AI implementation

WSR consumption 

Wet Strength Resin consumption was predicted for various grades based 
on the targeted Wet Tensile Strength, the composition of paper grades, 
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