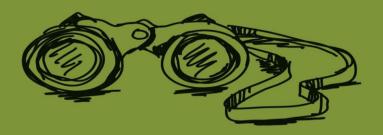
Al-Driven Real-Time "Prediction of Paper Stiffness and Moisture"

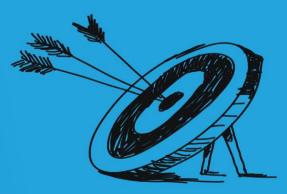
Presented by: Akhilesh Kumar Sunandan Mallick

JK Paper Ltd, Unit J K Paper Mills, Odisha, India



JK Paper Vision, Mission, Core values

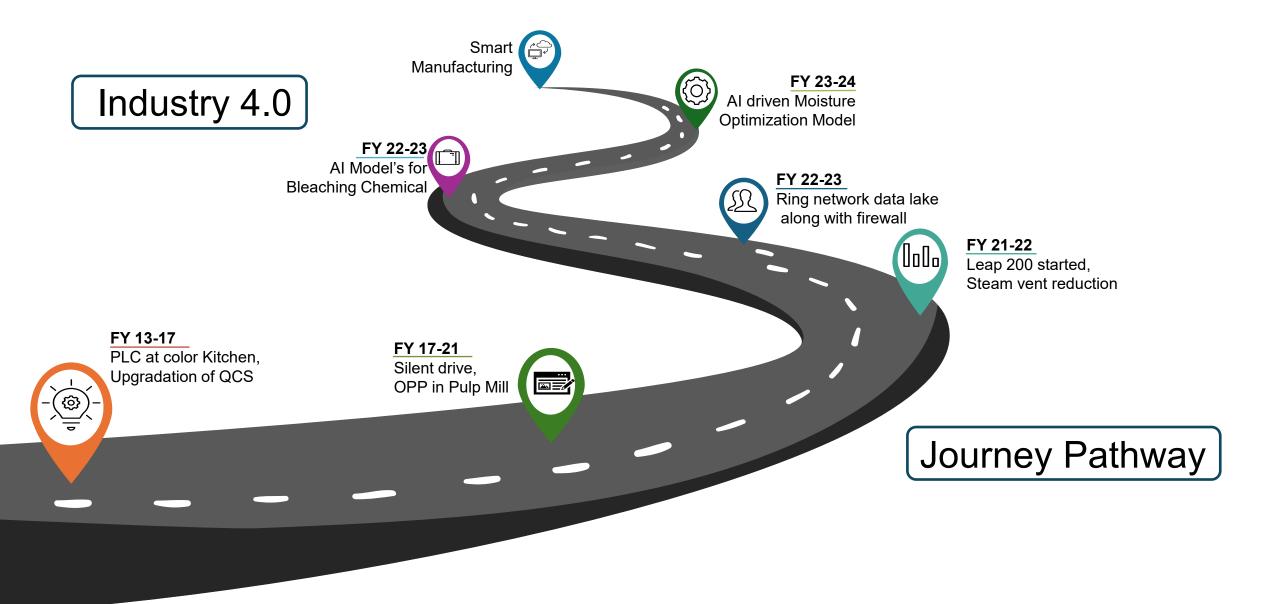
VISION


To be a trusted industry leader enriching lives and creating a better future

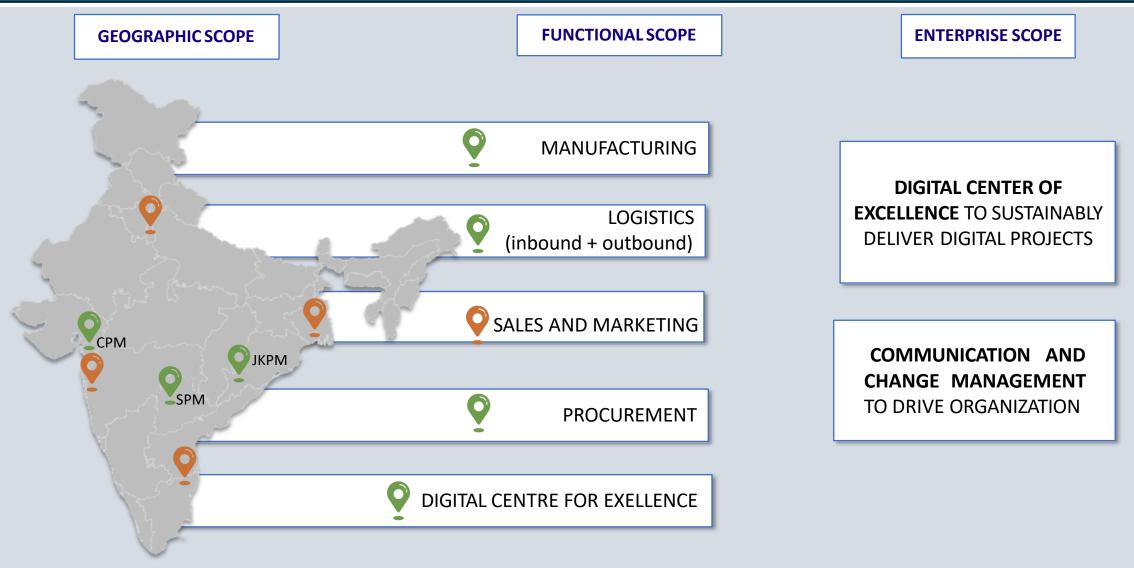
MISSION

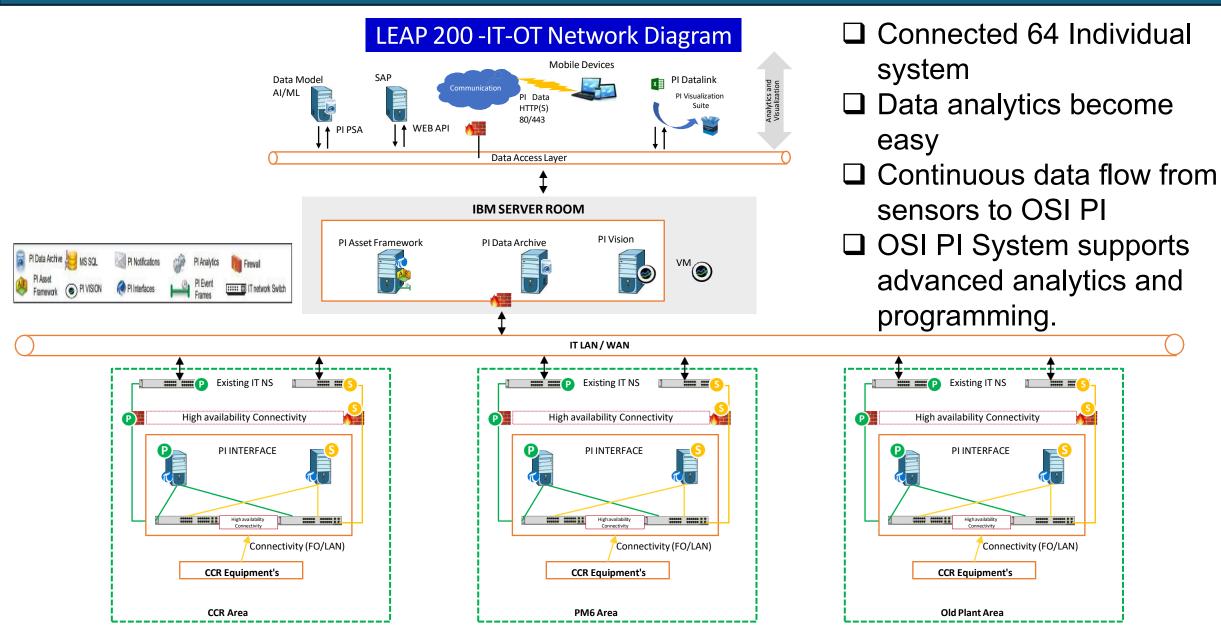
Deliver sustainable solutions & profitable growth through:

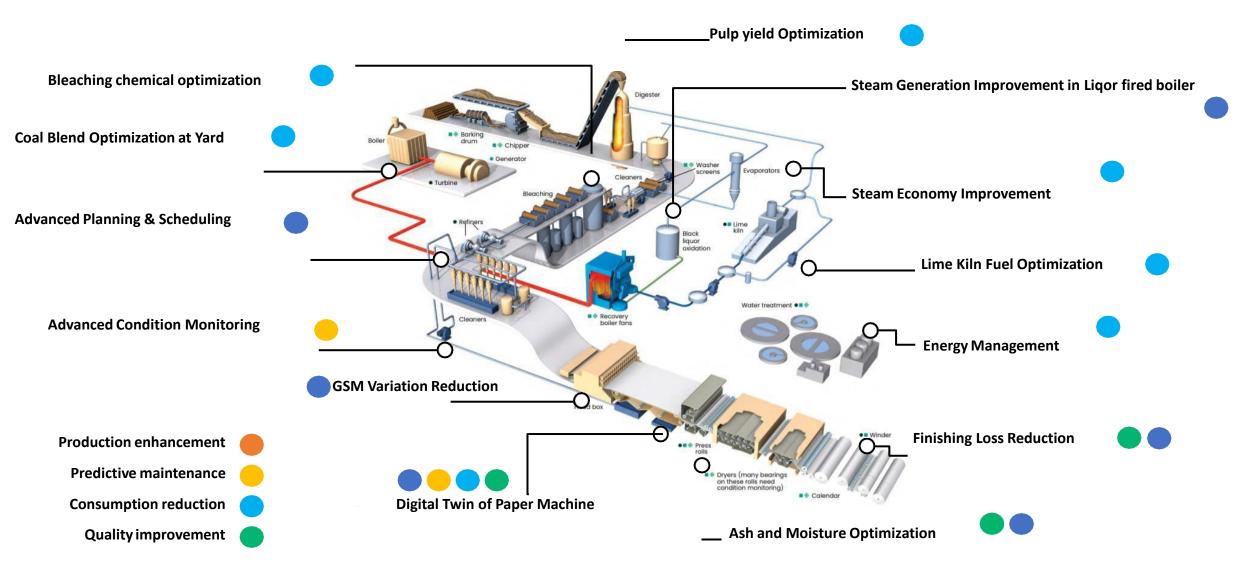
- Digitalization and Innovation
- Cost Competitiveness
- Customer Centricity
- People and Community care
- Outstanding & Agile Talent



CORE VALUES


- Caring for People
- Integrity including Intellectual Honesty, Openness, Fairness and Trust
- Commitment to Excellence


Digital Transformation Journey

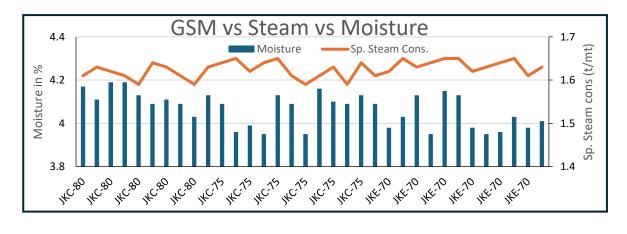

Digital Transformation Overview

Handshaking of data

Digital Transformation in Manufacturing Section

"Enhancing Moisture % in paper through Al-driven predictive and calculative quality control measures"

Moisture % is influenced by both operator settings and lab parameters


Different paper grades have operator-dependent setpoints

Lack of Real-time Monitoring & Control Decisions are based on historical data, not live process conditions.

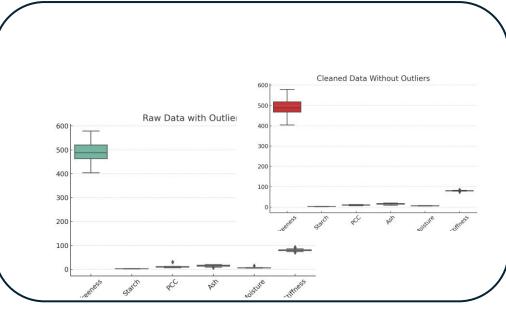
No predictive system to proactively adjust moisture levels.

Grade	GSM	Caliper	Bulk	Ash %	Moisture	Stiffness (md)	stifness (Cd)
1 SKU-1	70	106+_2	1.50+_0.05	20 Min	4.0 +_0.5	2.0 min	1.0 min
2 SKU-2	75	106+_2	1.50+_0.05	20 Min	4.0 +_0.5	2.0 min	1.0 min
3 SKU-3	75	106+_2	1.50+_0.05	20 Min	4.0 +_0.5	2.0 min	1.0 min
4 SKU-4	80	106+_2	1.45+_0.05	20 Min	4.0 +_0.5	2.0 min	1.0 min

Time	QUALITY	PM6 QUALITY Bulk	PM6 QUALITY Caliper	Stiffness_MD ▼	Stiffness_CD	Ash	PM6 Q	Moisture	PM6 Q	M/C_Roll_
09/16/2024 4:10:00 AM	JKC-75 N	1.43	107.6	2.5	1.6		250		279	
09/17/2024 2:00:00 AM	JKC-75 N	1.43	107.3	2.5	1.55	22	226	4.24	242	
09/17/2024 4:10:00 AM	JKC-75 N	1.43	107.7	2.5	1.45		230		252	
09/17/2024 10:30:00 AM	JKC-75 N	1.43	107.4	2.5	1.5		241		269	
09/10/2024 7:50:00 AM	JKEC-70N	1.48	105.1	2.45	1.4					
09/11/2024 6:40:00 AM	JKEC-70N	1.47	104.4	2.45	1.5	22	269	4.05	298	
09/11/2024 10:10:00 AM	JKEC-70N	1.48	104.4	2.45	1.45	21.5	280	4.29	298	
09/11/2024 11:20:00 AM	JKEC-70N	1.48	105.7	2.45	1.5		271		300	
09/17/2024 3:05:00 AM	JKC-75 N	1.43	107.6	2.45	1.5		230		252	
09/10/2024 6:50:00 AM	JKEC-70N	1.48	104.4	2.4	1.35	22.2	277	4.14	299	
09/10/2024 9:10:00 AM	a COPIER-70(N)	1.47	104.3	2.4	1.35		274		295	
09/10/2024 12:30:00 PM	JKEC-70N	1.48	104.3	2.4	1.3		281		300	
09/10/2024 5:10:00 PM	JKEC-70N	1.48	104.4	2.4	1.4			4.26		
09/10/2024 7:45:00 PM	JKEC-70N	1.49	104.7	2.4	1.5		278		300	

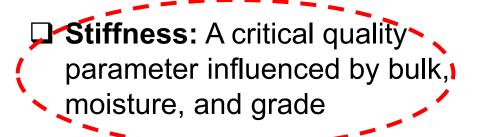
Methodology

Data collection


- Collected six months of minute-wise process data from PM6.
- Data extracted from DCS logs, lab reports, and sensor readings.

Data Cleaning Techniques

- □ Outlier **removal** using statistical methods
- Handling missing values using interpolation techniques.
- □ Standardization & normalization to improve model accuracy.
- Ensure high-quality, reliable input for AI model training.


57.8828495								10		1160										
	58.393739							10	1160.											
42.3738207								10		1160										
60.3245231								10	1160	0164	1	Л	L	M	N	UP	ų	8	Э	
50.8954075	63.397429	-2: 462LIC	3462LI	C3410/P	462PI3411	M 462PDI3521/	462LI3052/M	462HSE2	462HSE4	62H:44	52FI2303/M	63TIC5	463TIC5175/4	63TIC5	463TIC5275	463PIC5 463P	IC5 463PIC5	463PIC5	10 463PIC5202	463PIC5202 A/P
00.0002200	03.0412091	-20																		Ē
560.860996 52.7792188			8 57.9	8441603	3 14 137172	5 107 725565	98,441637	10	97	0.5	124 86643	70	69 9446506	90	90.1081568	0	0 0	-0.02354	5 3.45121002	3.45052548
52.7792188			8 57 9	1610755	14 131561	3 107 427802	98 3341539	10	97	0.6	118 23149	70	69 9804493	90	89 8804241	0	0 0	-0.0154	5 3 45121002	3 4476904
59.8593702		-2.				3 107 660867		10	97		5105 3557		70 0094619		89 9007872	0			2 3 45121002	
58 5264821		A				3 107 727012		10	97	0.6	115 64419		70 0571662	90	89 92651	0			4 3 45121002	
61.1256888						3 107 599393		10	97	-	095 47444		70.0217581	90	89 9765917	i.			1 3 45121002	
56.8547403					3 14 132622		98 4744774	10	97		5123 4342		70 0233273		90 2675366				9 3 45121002	
659.012379	73.9878203	21	-			17 107 487002		10	97	-	088 04883		69 9500777		90.0356267		0 0		2 3 45121002	
659.728657	79.7908425	2:				9 107 560354		10	97		112 64442		69 9967982		89 8798917		0 0		3 45121002	
59.5390105	75.8441126	-21 1								-										
658.641714		-2:				12 107.689379		10			5091.3108		70.0517274		89.9758249	0			34 3.45121002	
59.0914481		-2.				6 107.256611		10	97		5120.2002		69.8791458		89.8306375	8			3.45121002	
54.5937394	66.153161	-2: 5		7159633		8 107.593506		10	97		126.54161		70.0095342		89.973271	0			3 3.45121002	
		5		1137207		12 107.181302		10	97		122.03948		70.0963058		90.1347427	0			25 3.45121002	
		5	-			69 107.725319		10	97	-	5131.8054		70.033083		89.9752877	0	0 0		13 3.45121002	
		5				107.947128		10	97		097.80259		69.8572087		89.928165	0	0 0		29 3.45121002	
		5	8 58.0	4584152	2 14.057440	14 107.853517	98.3590902	10	97	0 5	097.18882	70	70.0669576		89.875239	0	0 0	-0.02011	3 3.45121002	3.44872631
		5	8 57.9	1527833	3 14.049838	108.137243	98.5095826	10	97	0	5120.044	70	70.0507147	90	90.0976545	0	0 0	-0.0208	19 3.45121002	3.44670258
		5	8 57.9	9953618	3 14.059947	9 107.977031	98.4954023	10	97	0.5	097.33943	70	69.9938122	90	89.9016813	0	0 0	-0.0174	3.45121002	3.4505594
		5	8 57.8	1140017	14.061522	9 107.81682	98.4876875	10	97	0 5	120.08272	70	69.9567587	90	90.3027431	0	0 0	-0.0193	34 3.45121002	3.45107145
		5	8 57	9850491	14.067908	4 107.860832	98.4051707	10	97	0 5	105.26048	70	69.9444316	90	89.9377192	0	0 0	-0.0192	34 3.45121002	3.44742189

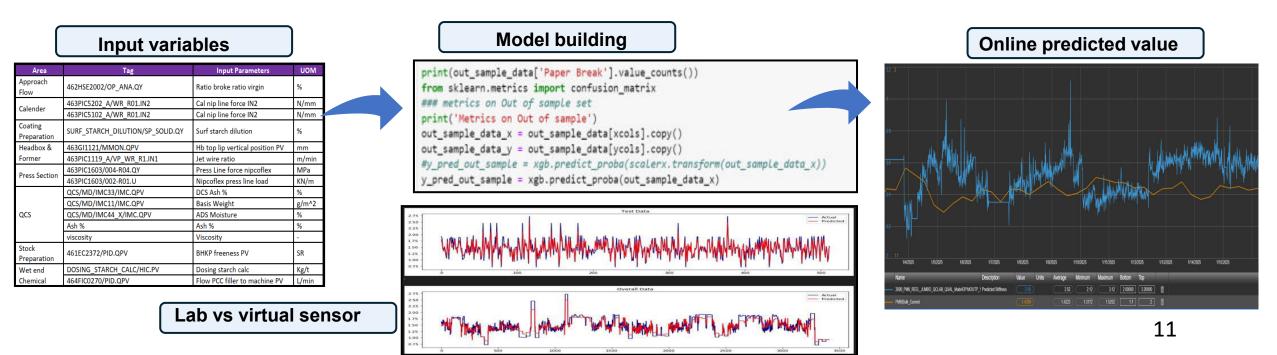
Methodology

Parameters Monitor

- Stock Parameter
- **Chemical Parameters**
- **QCS** Parameters
- Basis Weight
- Bulk

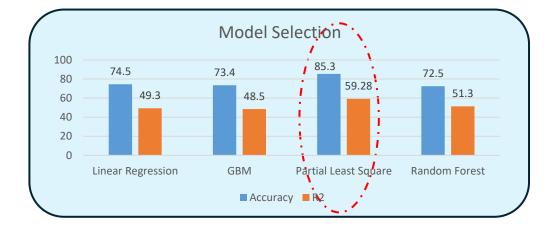
Challenges

Stiffness Data Delay: Stiffness measurements were only available through lab testing, causing delays in feedback and process adjustments.


Solution

Virtual Sensor: A virtual sensor was developed using selected online variables to estimate stiffness in realtime.

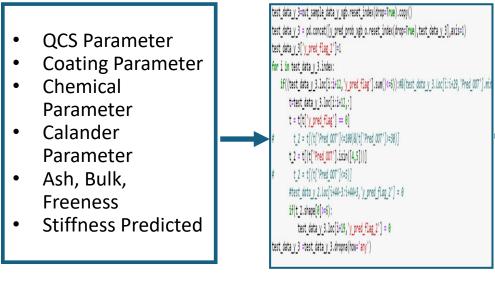
Optimization of Quality Parameters Using AI-Based Virtual Sensor

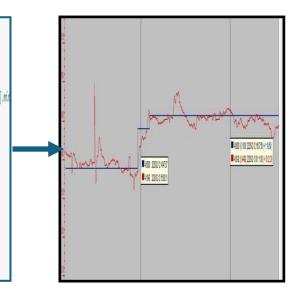

Virtual Sensor Stiffness Prediction

- Developed a virtual sensor using key process variables.
- □ Using input variables, we built a model utilizing multicollinearity to predict stiffness.
- □ Assigned the trends in the historian for monitoring and analysis.
- □ The predicted virtual sensor values match lab data with 95% accuracy.
- □ Enables real-time stiffness prediction to optimize moisture levels.

Model Selection

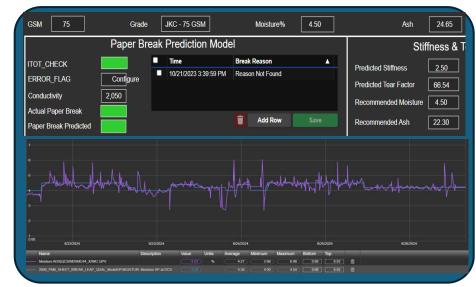
- We used multiple analytical approaches and selected as per their accuracy and R² value
- We have selected PLS analytical approach.




Model Development

- □ All the variable were selected using correlation
- Data collected from different sources like Lab , DCS.
- □ After corelation we selected PLS and Linear regression for model deployment.
- □ Model deployed in OSI PI, trained and tested using different data sets.

Moisture Model


- •Predicted stiffness MD and bulk determine the optimal moisture setpoint
- •The algorithm operates within a minimum and maximum band range to ensure stability.
- •The model helps achieve higher moisture levels while maintaining minimum quality standards.

				Minim		
		Min	Maximum	um	Minimum	Maximum
GSM	Grade	Moisture	Moisture	Bulk	Ash	Ash
70	SKU-1	4	5	1.46	20	24
70	SKU-2	4	5	1.46	20	24
75	SKU-3	4.2	5	1.41	22	24
70	SKU-4	4	5	1.46	20	24
75	SKU-5	4.2	5	1.41	22	24
80	SKU-6	4.2	5	1.35	22	24

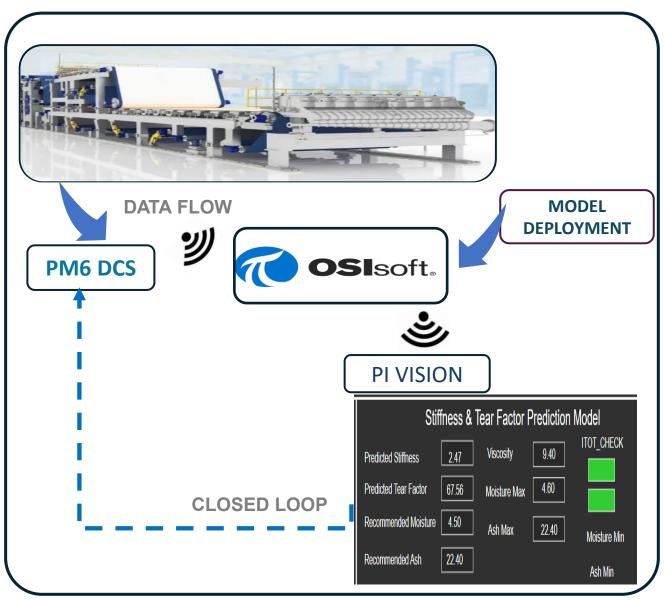
Grade wise range

Input Parameter

Algorithm

Recommended Moisture SP

Dashboard 13


Visualization and Closed Loop Monitoring

Visualization

- •DCS Integration: IT/OT connectivity for seamless operation.
- •Real-Time Optimization: Continuous sensor data enables Al-driven adjustments.
- •Smart Dashboard: Provides operator recommendations.

Loop Monitoring and control

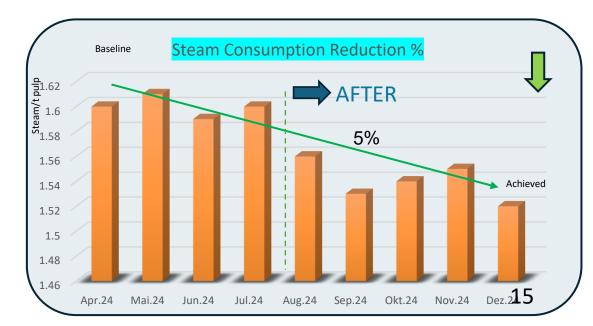
- •Cloud Monitoring: Enables remote access and tracking.
- •Closed-Loop Control: Initiated after a successful trial.
- •Error Handling: Feedback system detects data failures and model anomalies.

Value Delivered by the Project

Moisture Improvement

- •Moisture improved and <u>gained 9%</u> from baseline to target through AI.
- •AI improved consistency, reducing manual rework.
- •Better control over drying process
- •Improved paper strength.

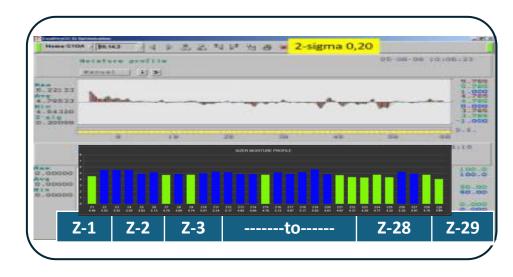
Steam Reduction


Steam consumption reduced from

baseline.

- •Target achieved: 5% reduction.
- •Reduction in steam usage impact on

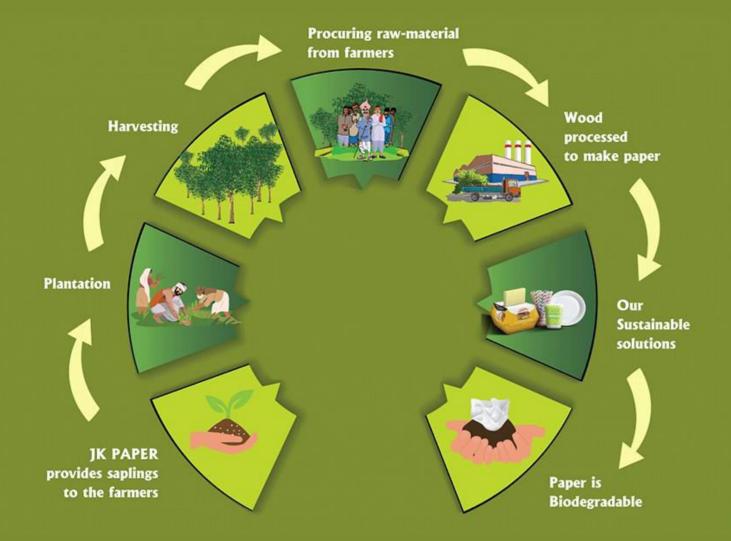
lower production costs.


Upcoming AI Model

Proposed Idea for improving CD moisture profile

- □ AI-Driven CD Moisture Profile Optimization
- Virtual Sensor Implementation
- □ Intelligent Quality & Cost Optimization

Anticipated Advantages


- **Precision**: Al minimizes manual tuning, ensuring stability.
- **Efficiency**: Automated control enhances response time.
- **Quality**: Better moisture uniformity improves the product.

- **Revolutionizing paper production** through AI-driven technologies, optimizing processes from raw material handling to final product output.
- Enhanced operational efficiency with AI systems for predictive maintenance, real-time process monitoring, and automated adjustments, reducing downtime and improving throughput.
- Al-enabled quality control ensuring consistent product quality by analyzing key parameters and making data-driven adjustments during production.
- Significant **cost savings and sustainability improvements** achieved by reducing energy consumption, optimizing resource usage, and minimizing waste.

The adoption of AI continues to **transform the future of paper manufacturing** paving the way for smarter, more efficient, and environmentally responsible production methods.

JK PAPER MAKING LIVES SUSTAINABLE THANKS

