

Harnessing Artificial Intelligence (AI) in TNPL Paper Conversion Process

R.B.Lakshmipathi Sakthi* Deputy Manager

S.Kumaran* Asst. General Manager

K.Sakthivel* Chief Manager

S. Gokulakannan* Deputy Manager

A.Senthilvel* Deputy Manager

Abstract:

Paper industry is at critical inflection point in the history. Mills are feeling the weight of changing demand trends, rising energy and raw material prices besides increasingly stringent environmental pressures. To thrive in this evolving landscape, rapid implementation of cost-effective solutions that enhance agility in production is crucial. Swift adoption of Artificial Intelligence can help to control costs, improve production and meet the sustainable goals. It can also help the industry pivot to different products more rapidly. AI revolutionized various aspects of Process Optimization to enhance product quality, Waste reduction etc.

Paper industries today focus on waste reduction in every stage of paper manufacturing. Conversation of Jumbo rolls into reels is one major area everyone focuses on. Operating with minimum trim in the Winder & Rewinder during conversion of parent reels to child reels becomes a great challenge while accommodating various customer requirements. Reducing trim also contributes to reduced resource usage and effluent discharge, thereby helping the industry to perform more effectively & economically sustainable.

This article delves & explores the challenges and opportunities utilizing AI technology for Trim optimization during Paper conversion process by following Manufacturing Excellence – A tailor made manufacturing concept embracing basic statistical tools used to drive Six Sigma projects. This article explains our journey in successful incorporation of AI in Trim optimization along with functional expertise and shows how we reaped the benefits of improved efficiency & cost savings.

Keywords: Trim Optimization, Manufacturing Excellence, Six Sigma

1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE IN PAPER INDUSTRY

Artificial Intelligence, abbreviated as AI is engineered to acquire knowledge through exposure, Adapt to novel inputs, and accomplish tasks without explicit pre-programming. The pulp and paper industry has undergone significant technological advancements in recent years, with the introduction of digital technologies and automation improving efficiency and reducing costs. With the help of AI, companies can continue to improve efficiency, reduce waste, and meet the demands of a changing market while also prioritizing sustainability and social responsibility. By analyzing data from production processes, AI can identify areas where opportunities for optimizing resource usage like Waste reduction and provide recommendations for it. In spite of the potential advantages of AI in the paper industry, there exist numerous hurdles that necessitate attention. Despite these challenges, many manufacturers in the pulp and paper industry are already exploring the use of AI to improve their operations and reduce their environmental impact.

2. TRIM OPTIMIZATION FOR REDUCTION OF WASTAGE

It is essential to recognize that waste is an inherent part of the process. No matter how well waste is minimized but it needs to be noticed amidst the optimization efforts in the facility. The primary focus for conversion process is to produce required reel widths with minimum trim and with minimum number of cutting patterns or the knife-set up actions. Trim loss is an inevitable outcome of the trimming process. The trim-loss problem for any paper machine/ winder is solved as an integrated part of production planning before the jumbo reels are actually being produced. In case of any quality deviations, the predetermined cutting plan may be far from optimal. However, the available time for doing manual changes to the cutting patterns of a large number of jumbo-reels operations is often very limited.

Reduction of trim loss by increasing Deckle Utilization through AI & workforce expertise has been taken as a task oriented project by our team using Six Sigma tool DMAIC (Define, Measure, Analyze, Improve and Control)

Define Phase: Winder#3 was designed for a maximum deckle of 544 CMS. But, this deckle could not be achieved every time due to operational constraints, due to which the average Deckle utilization on a monthly basis was limited to 534 CMS. It was also found that better increasing the deckle utilization would be possible if a systematic problem solving technique is used. Based on this the problem was defined as below:

Problem Statement	Goal Statement	Business Case		
Lesser Deckle Utilization of	Increasing	1 CM increase in Deckle		
534 CMS in Winder against	Deckle Utilization by 5 CMS	Utilization will incur 1 MT of		
capacity of	(534 CMS to 539 CMS)	paper per day which intern Rs.		
544 CMS	(334 CIVI3 to 339 CIVI3)	10 millions per annum		

Measure Phase: Measuring the deckle for each jumbo manually is a tedious task and cannot be done with accuracy every time. But modern digitalization enables this activity through a simple photo cell which is mounted in Scanners equipped with encoder. It can be called also as "Auto Edge off Sheet" (Figure: 1) sensor used to map CD profile of Basis weight & Caliper. The sensor helps to detect both edges (Front & Drive side) of paper online and by comparing the scanner encoder value the Sheet Width is measured & indicated in DCS graphics. The trends of Sheet Width from both Scanners (Before Sizer & after Sizer) were configured to analyze further in depth.

Figure: 1 Auto Edge OFF Sheet Sensor in Scanner & Sheet Width display in DCS Graphics

Analyze Phase: An acute discussion with officers & brain storming sessions with workmen were out to find variable factors which may influence higher trim loss. All the factors were listed out, and a cause & effect (Fish bone) diagram prepared (Figure: 2). Then as per procedure all the suitable factors were evaluated using risk priority numbering system. RPN system was followed with Severity, Occurrence & Detection (SOD) score. The top most factors were identified as follows

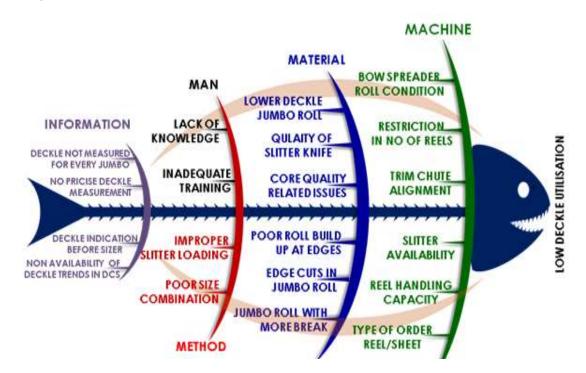


Figure: 2 Cause & Effect Diagram for Lower Deckle Utilization

- a. Lower deckle Jumbo roll which could not be accommodated in winder to operate with lesser trim since it leads to defective reels
- b. Poor Size combinations, which could not utilize the entire jumbo deckle with minimum trim loss

Improve Phase:

a. Lower Deckle Parent Roll:

In continuation of the analyze phase deckle variations in parent roll was closely monitored through digital signal obtained from scanner photo cell. Various factors were observed which influences much on deckle like, Furnish, Basis Weight, Jet/Wire Speed difference, Sizer metering rod profile etc. Each factor was evaluated with the available data and the same has been represented below Table No.1, 2, 3, 4 & Figure No.3.

Table: 1 – Comparison between Furnish & Deckle										
HWP %	DECKLE MTS									
100	0	0	5.49							
75	20	5	5.48							
55	35	10	5.46							
50	40	10	5.44							
45	45	10	5.42							

Table: 2 – Comparison between Basis Weight & Deckle								
BASIS WEIGHT GSM	DECKLE METERS							
54	5.44							
60	5.44							
64	5.45							
70	5.47							
80	5.48							

	– Comparison be letering Rod & De		Table: 4 – Comparison between Jet/Wire Speed Difference & Deckle			
BOTTOM ROD PROFILE NO	TOP ROD PROFILE NO	DECKLE IN METERS		JET/WIRE SPEED DIFF. MPM	DECKLE IN METERS	
11	11	5.45		25	5.495	
9	9	5.45		15	5.490	
8	8	5.46		5	5.485	
7	7	5.46		-15	5.480	
6	6	5.47		-25	5.475	

With the help of digitalization the reason and correlation between various factors with deckle were identified and the same has been tabulated in Table: 5. based on the analysis best possible process parameters were identified for a higher sheet width for different varieties.

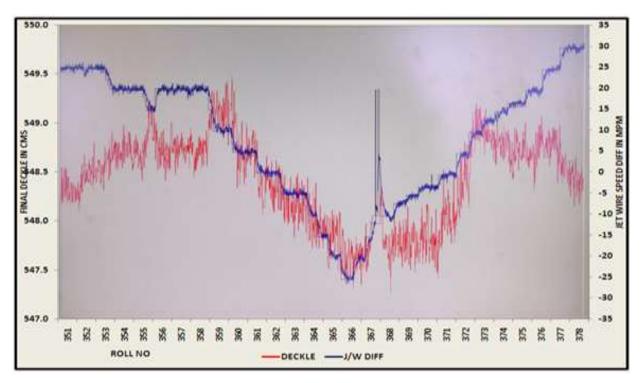
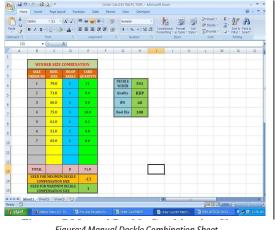


Figure: 3 Trend of Sheet Width and Jet Wire Speed Difference

Table: 5 – Correlation between Factor & Deckle									
Factor	Deckle	Proportionality							
Higher Basis Weight	Higher Deckle	Directly Proportional							
Lower Bagasse Pulp	Higher Deckle	Inversely Proportional							
Higher HWP	Higher Deckle	Directly Proportional							
Lower Profile Metering Rods	Higher Deckle	Inversely Proportional							
Higher Jet Speed Difference	Higher Deckle	Directly Proportional							

As a result sheet width has been increased by 3 CMS in parent roll itself which enables winder to operate at higher deckle utilization with sufficient trim. It can be explained with the following example as per Table No: 6.


Table: 6 – Case Example for Higher Deckle Utilization									
Sale Order Details RDP 57 GSM 88 CMS REEL 21 MT, RDP 57	Description								
GSM 73 CMS REEL 42 MT	Parent Roll Deckle - 545	Parent Roll Deckle - 548							
Available Deckle after Minimum Trim of 3 CMS in Parent Roll	539 CMS	542 CMS							
Size Combinations	1. 73 ⁶ +97 ¹ 2. 88 ³ +73 ² +62 ²	88 ² +73 ⁵							
Utilized Deckle CMS	535 & 534	541							
Excess Quantity	18.1 MT (97 & 62)	1.6 MT							
Trim Loss %	1.93	1.28							

b. Poor size combination:

Deckle matching is a complex process that can save millions if it is carried out efficiently. Deckle matching was done by manual matching of orders through spreadsheets which is a time-consuming process. The prepared deckle match solution is not guaranteed to be the most optimal solution. It became a very difficult task to manage order fulfillment as we are unable to plan deckle matching for more than 2-3 days ahead resulting in a last-minute scramble to fulfill orders. As there were many specifications from the customers, in the orders, we were not able to hold an inventory of products for standard sizes. Order quantity also frequently changes at the customer site, resulting in increased combinations for deckle matching. Difficulties in managing unfulfilled order items for deckle matching as their quantity varies significantly resulting in high trim losses and more combinations for the solution.

To optimize the process of deckle matching and to ensure the maximum utilization of deckle from parent roll with minimum number of size combination TNPL collaborated with software provider. The AI based Deckle matching software has been introduced in production planning process along with manual deckle matching using spreadsheets. The steps involved in Deckle matching software graphics and manual deckle matching spread sheet are illustrated in the below figures 4 & 5.

In manual deckle matching spread sheet, size combinations is carried out on trial & error basis by considering reel width, Order quantity & maximum possible utilization of deckle. The number of size combinations depends upon the skill set of the person who works on it. Deviations in deckle utilization & quantity will be differing, from person to person, whereas in deckle matching software the repeatability of the size combination & order quantity remains same.

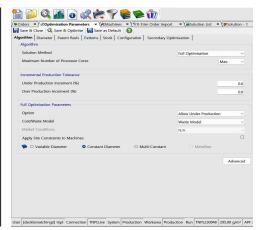


Figure:4 Manual Deckle Combination Sheet

Figure: 5 Entries for Optimizing Parameters

This Deckle optimization software allows last minute corrections in order quantity with minimum time frame compared to manual work. The limitations like deckle width, Number of reels per set, tolerance level of order quantity & reel diameter were incorporated in this software. Some of the graphics in software are shown in Figure No: 6 & 7. Final size combinations are then fixed by comparing both the results of manual & software based workings. Some of the case examples are tabulated in Table No: 7.

	lers × \∷-Soluti	ion Progress	×																
-	þ. 🔳 🗎 /	Split 👔 A	dd help sizes	🍿 🏠 Pre-all	ocate Stock 🢡	Sensitivity 🗆 All	0												
	Order Number	Order Type	Quantity Units	(kg) Required Quantity	(kg) Remain Quantity	(rl) Remaining @ final diameter	-%	+%	(mm) Width	(mm) Length	(kg) Max. Reel Weight	(mm) Min. Diam	(mm) Diameter	(mm) Max. Diam	(mm) Core Size	Core Type	Secondary Machines	TNPL Special	
1		K		+ .	<	-	-	-			-	-	-	-	- [- 1		-
1	82022002158-6	Must make	kg	800	800	0.7	0.0	5.0	1,055	C	9,999	1,500	1,500	1,500	152		FG		KALRA
1	82022003004-3	Must make	kg	2,600	2,600	4.0	0.0	5.0	585	0	9,999	1,500	1,500	1,500	152		FG		KALRA
1	82022003004-1	Must make	kg	3,000	3,000	2.4	0.0	5.0	1,118	C	9,999	1,500	1,500	1,500	152		FG		KALRA
1	82022003004-4	Must make	kg	3,300	3,300	4.9	0.0	5.0	610	(9,999	1,500	1,500	1,500	152		FG		KALRA
Ī	82022003004-8	Must make	kg	3,600	3,600	4.9	0.0	5.0	660	C	9,999	1,500	1,500	1,500	152		FG		KALRA
Ì	82022003004-10	Must make	kg	4,000	4,000	5.1	0.0	5.0	711	(9,999	1,500	1,500	1,500	152		FG		KALRA
Ī	82022003004-6	Must make	kg	4,000	4,000	5.7	0.0	5.0	635	C	9,999	1,500	1,500	1,500	152		FG		KALRA
Ī	82022002156-7	Must make	kg	4,400	4,400	5.6	0.0	5.0	711	C	9,999	1,500	1,500	1,500	152		FG		KALRA
Ī	82022000908-13	Must make	kg	4,600	4,600	4.6	0.0	5.0	910	C	9,999	1,500	1,500	1,500	152		FG		METRO
1	82022000908-10	Must make	kg	5,100	5,100	3.9	0.0	5.0	1,170	0	9,999	1,500	1,500	1,500	152		FG		METRO
1	82022002732-1	Must make	kg	7,100	7,100	5.4	0.0	5.0	1,190	C	9,999	1,500	1,500	1,500	152		FG		K C PA
1	82022002278-4	Must make	kg	10,100	10,100	10.0	0.0	5.0	910	0	9,999	1,500	1,500	1,500	152		FG		METRO
Ī	82022002732-4	Must make	kg	10,100	10,100	<u>14.</u> 4	0.0	5.0	635	C	9,999	1,500	1,500	1,500	152		FG		K C PA
1	82022002976-2	Must make	kg	10,100	10,100	10.0	0.0	5.0	910	C	9,999	1,500	1,500	1,500	152		FG		METRO
ŧ	PM-V	VND-REW	BM1 BW1	Rewinder	FG					+	Ship	-To (ka	Min. ((g) Max.	(rl) Min.	(rl) Max.	Least	(kg) Origi (r) Origina
*	D PM-V	VND-CUT	BM1 BW1	Miltex-1	FG					T B	Gro			Juantity	Quantity	Quantity			n. Quan
-	D PM-V	VND-CUT	BM1 BW1	Militex-2	FG				E	3									
			10000	0 0 .	50														
	D PM-V	VND-CUT	BM1 BW1	Contract Cut	ter FG														

Figure: 6 Entries for Order Details

) 📁 🤇 🚮	0	5		;7 e e													
Orders × (\\$X-Trim Order										Solutio	1-5 ×						
🔚 Save & Close 🖪 •		•	📚 Ø	🏦 Add help orders 🤌	🤹 🇊 🔣 🕵 2nc	l optimisation		🔌 📲 🔶 Releas	e 🚷 🔫 🕜								
KPI Value	1	BW1		 Secondar 	y Machine			×		+ m =		Display 2 9	tage Report_	Cutter -	Stc • 🔊 🕜		
		6			0					Prin	ary		(kg)	(mm)	Pattern		
Total Waste (%) 0.3			0		1000	2000		3000	3670 mm 💡	🛎 Mad		x ID x	Production		thumb	(mm) Diameter	Duration
Run Length (kg) 66,			Г		1				י ד	⊕ ► BM1			5 11,465	5 3,670		ç	80 000:00:57
	29	1) 5		PT	Í F	G	FG	FG	980/76(OUT)	BM1				3,670			80 000:00:34
Stock Consum	0					-	<u> </u>			⊕ BM1			3 6,879				80 000:00:34
Physical Patterns	10	2) 3		PT		PT	FG	FG	980/76(OUT)	BM1			2 4,586				80 000:00:22
	1.0				- <u>,</u>	8	· · · · · ·	_	-	BM1		_		3,660			80 000:00:11 80 000:00:11
	.00	3) 3	•	PT	PT		FG	FG	980/76(OUT)	BM1			2 4,586	3,660 3,660			80 000:00:22
rimary Waste	153				1					BIMI		_	3 6,879				80 000:00:34
Primary Waste 0.3	30	4) 2	•	PT	F	G	FG	FG	980/76(OUT)	BM1				3,660			80 000:00:11
Knife Changes	34					-							1				
		5) 1	•	PT	F	G	FG	FG	980/76(OUT)	Display	All Orders		Load Plan	0			
	•	6) 1	•	PT	F	G	FG	FG	980/76(OUT)	c 🔹 c	rder Numbe	er ar	(mm) Width	(mm) Length	(kg) Required Quantity	(kg) (Allo Quantity	(kg) (+/-) Quantity
		7) 2	,	РТ) PI	r Í	PT	FG	980/76(OUT)			-	-		-		
								_	-		4001505-1	ha	720	C		and the second	8
		8) 3	•	PT	PT		PT	FG	980/76(OUT)		4000049-4 4000861-11	ha	1,200	0		and the second se	
										1.	4000861-11	1a	825	0			
		9) 1	•	PT	PT		PT	FG	980/76(OUT)	1	4001021-2	ha	1.050	0			
				DT	Î,	c Ì	FC			13 June 13 975	4001268-1	ha	800	C			
		10) 2	1	PT	F	G	FG	FG	980/76(OUT)	8202	4001301-3	ha	1,050	C	15,745	15,745	
		11) 4		РТ) PI	Î	FG	FG	980/76(OUT)	8202	4001360-1	ha	930	C	5,230	5,230	
							10				4001544-10	ha	825	C	10.15	1000.0110	
		12) 1		FG	FG	FG	FG	FG	980/76(OUT)	1	4001544-11	na	630	C			
			_		1.5			, ···		1.	4001544-4	ha	645	0	1,016		
		13) 1		FG	FG	FG	FG	FG	980/76(OUT)		4001544-5	ha	815	0			
Waste = 0.230 % Run Le										1			2.00				

Figure: 7 Deckle Matching Solutions

	Table: 7 – Case Example for Manual & Software workings comparison										
S.NO	Oder Quantity	Number of Size	e Combinations	Average Deckle Utilization CMS							
5.110	МТ	Manual	Al Based Software	Manual	Al Based Software						
1	1254	17	22	538	540						
2	1127	16	14	537	539						
3	88	6	7	533	531						
4	581	5	5	537	538						
5	687	7	6	538	540						

Control Phase: A comparison system has been incorporated in existing Production planning process to extract the best possible combinations from both AI based Deckle matching software & Workforce expertise. After increasing the Parent roll deckle & using the trim Optimization software, average winder deckle utilization has been increased by around 5 CMS (Figure: 8) with lesser size combinations.

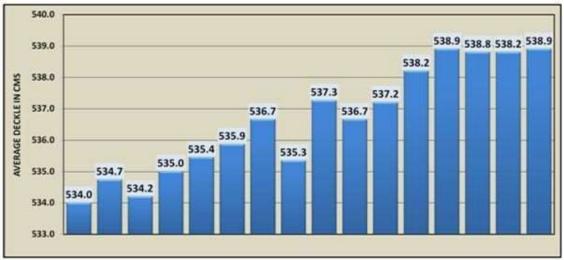


Figure: 8 Winder Average Deckle Utilization

TABLE NO: 8 - COST IMPACT ON WINDER DECKLE UTILIZATION									
Description	Difference								
Avg. Deckle Utilization in Winder-3	1.9 cms								
Total Machine Production P	Total Machine Production PM#3 (2023-2024)								
Projected Utilized Deckle Production	165971 (535.9 CMS)	166559 (537.8 CMS)	588 MT						
Total Cost Benefit for the	Total Cost Benefit for the year 2023-2024								

4. CONCLUSION

Cost cutting is no longer the solution to sustainable profitability. The key to success is finding creative ways to prevent waste. The mix of people, process & technology is a recipe for success when used strategically. Leveraging AI technologies effectively is a boon for those who are ready to increase their bottom line with new business opportunities. The complete process of papermaking and eco-system will be driven by AI in current industrial revolution & TNPL is fast embracing it through IIOT which is stepping stone of Industry 4.0.

ACKNOWLEDGMENT

We would like to take this opportunity to thank our company TNPL for supporting us to adapt any innovated ideas which enriches our skill & knowledge along with the growth of company. We thank our entire departments HOD's & Officers for guiding & motivating us to explore many ideas to implement AI across the organization. Also we would like to extend our thanks to Automation, IT, Marketing & HR Department for supporting us to successfully complete the project described in this article.

References:

- De Carvalho, J.V.; Rodrigues, A.G. An LP-based approach to a two-stage cutting stock problem. Eur. J. Oper. Res. 1995, 84, 580–589.
- Ferreira, J.S.; Neves, M.A.; Castro, P.F. A two-phase roll cutting problem. Eur. J. Oper. Res. 1990, 44, 185–196.
- Arenales, M.N.; Cherri, A.C.; Nascimento, D.N.d.; Vianna, A. A new mathematical model for the cutting stock/leftover problem. Pesqui. Oper. 2015, 35, 509–522.
- Becker, K.H.; Appa, G. A heuristic for the Minimum Score Separation Problem, a combinatorial problem associated with the cutting stock problem. J. Oper. Res. Soc. 2015, 66, 1297–1311.
- Gradišar, M.; Jesenko, J.; Resinovi c, G. Optimization of roll cutting in clothing industry. Comput. Oper. Res. 1997, 24, 945–953.
- erberler, M.E.; Nuriyev, U.; Yıldırım, A. A software for the one-dimensional cutting stock problem. J. King Saud Univ Sci. 2011, 23, 69–76.
- 7. Brown, A.R. Optimum Packing and Depletion; American Elsevie: New York, NY, USA, 1971.
- 8. 21. Scheithauer, G. A note on handling residual lengths. Optimization 1991, 22, 461–466.