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Abstract:
In the modern era of artificial intelligence (AI), analytical models have become essential 
tools for enhancing productivity and quality across various industries. This paper delves into 
the significant role these models play, particularly in the pulp to paper optimization process 
within the paper industry. By leveraging advanced data analytics and AI-driven solutions, 
the industry can achieve remarkable improvements in efficiency, cost-effectiveness, and 
product quality.

The paper will explore the methodologies and technologies employed in optimizing the pulp 
to paper process, from raw material selection to the final paper product. It will highlight how 
AI and machine learning algorithms can monitor and control various stages of production, 
leading to reduced energy consumption, minimized waste, and enhanced environmental 
sustainability. Case studies and best practices will be presented to demonstrate the tangible 
benefits and transformative impact of these analytical models.

Through this exploration, the paper aims to provide insights into how the integration of 
AI-driven analytics can empower the paper industry to meet the challenges of a competitive 
market, drive innovation, and achieve sustainable growth.

The paper industry is undergoing a significant transformation through the optimization of 
the pulp-to-paper process, driven by advancements in analytical models and AI technologies. 
This optimization aims to enhance efficiency, reduce waste, and improve the quality of the 
final product. By leveraging data analytics, machine learning, and process automation, 
manufacturers can monitor and control various stages of production, from raw material 
selection to the final paper output.

The integration of AI-driven solutions enables real-time data analysis and predictive 
maintenance, ensuring that machinery operates at optimal performance levels. This leads 
to reduced downtime and maintenance costs, while also extending the lifespan of equipment. 
Additionally, advanced analytics help in identifying patterns and trends that can inform 
better decision-making, such as optimizing the mix of raw materials to achieve desired paper 
qualities and minimizing environmental impact.

Case studies from leading industry players demonstrate the substantial improvements 
in productivity and quality achieved through these technologies. For instance, the 
implementation of AI-driven process control systems has resulted in significant raw material 
savings, reduced chemical usage, and enhanced product consistency. These advancements 
not only contribute to cost savings but also support sustainability goals by reducing the 
carbon footprint of paper production.

This paper explores the methodologies and technologies employed in optimizing the pulp-
to-paper process, highlighting best practices and successful implementations. The findings 
underscore the transformative impact of AI and analytical models in empowering the paper 
industry to meet the challenges of a competitive market, drive innovation, and achieve 
sustainable growth.
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Introduction

Artificial intelligence (AI) is a central technology for enabling 
autonomy in a pulp and paper mill, as companies are aiming to 
increase the autonomy of their operations [1]. In a fully autonomous 
mill, production is at 100% control in all situations without manual 
intervention, the system monitors its own performance, and the 
system reacts to deviations automatically. Autonomous operations 
are pursued in a stage-wise manner, both when the degree of 
autonomy and process management and control layers are concerned 
(process technology, process optimization, mill-wide or value chain 
optimization, manufacturing optimization) [2]. However, the role of 
humans is still important, and it will evolve towards orchestrating 
and supervising operations, empowered by tools for monitoring, 
understanding, controlling, and optimizing the mill. Important value 
drivers for autonomous operations include:

• Improve sustainability along more optimized processes and 
reduced raw material consumption.

• Reduce fixed costs by centralizing control room operations and 
reducing the number of people.

• Improve safety along higher level of autonomy in field operations.

• Maximize asset performance and mill overall equipment efficiency 
(OEE) over the life cycle.

• Reduce the impact of ageing workforce and workforce scarcity 
through reducing the need for human intervention in highly 
complex and interactive processes.

AI solutions can be either analytical or generative. Analytical AI is used 
at specific tasks by fast and efficient data analysis without significant 
recollection of past outcomes. This makes it ideal for the rule-based 
decision-making and analysis in real-time scenarios. Generative AI 
focuses on creating new content and insights by synthesizing past 
and present data to make decisions. Generative AI models get better 
over time, making them more adaptable and strategic, by default. 
Examples of applications that leverage analytical AI are advanced 
soft sensors and real-time process optimizers. Examples of generative 
AI are complex engineering task assistants and field engineer virtual 
support systems.

While applying AI, we must ensure fairness, privacy, and security. 
Responsible AI principles include: 

• Traceability: Plan how AI is trained, what information it has access 
to, and study the code libraries.

• Transparency: Define guidelines for how AI-generated is used and 
labeled, and who is accountable.

• Oversight: Make regular audits and assess the actions of AI.

• Governance: Continuously follow the development of the field, 
and review and update guidelines.

• Security: Set adequate safeguards and mitigate potential cyber 
threats and vulnerabilities.

This paper highlights examples on how AI-powered monitoring 
and control solutions are prevalent in the pulp and paper industry. 
Emphasis is placed on process optimization, and a pulp mill case 
study on mill-wide optimization by Valmet is presented. Valmet has 
strategically integrated AI into its operations to drive innovation and 
efficiency through both analytical and generative AI. By leveraging 
AI, Valmet enhances its operational capabilities and strengthens its 
competitive position in the global market, enabling it to better serve 
a diverse and international customer base. In the realm of analytical 
AI, Valmet utilizes advanced analytics to extract valuable insights 
from large process datasets. This includes statistical analysis, data 
mining, mathematical modeling, and machine learning to understand 
trends and relationships within the data, thereby enhancing process 
optimization and improving end quality. Generative AI allows 
to enhance efficiency, reduce costs, and improve productivity of 
operations by helping e.g. field service engineers and technical support 
teams to diagnose and resolve issues, suggest troubleshooting steps, 
and provide technical documentation to customers, while decreasing 
lead times. Automated report generation is another application area 
of generative AI (service and performance reports, RFP responses, 
compliance documentation, etc.), reducing manual workload and 
ensuring reporting consistency.

This paper is structured as follows. Section 2 gives examples of the 
role of analytical models in process area monitoring and optimization. 
Section 3 presents the mill-wide optimization case example. Section 
4 contains the conclusions of the paper.

MATERIALS AND METHODS

AI-driven Data Integration and Optimization of Process Areas

Improved operation at pulp and paper process areas can be gained 
through more efficient utilization of collected process data, and 
through active optimization of process area key performance 
indicators (KPI) through advanced process control (APC). In 
addition, advanced process analyzers are used for providing reliable 
data for these solutions. The integration of wet-end, runnability, and 
sheet quality data with machine direction (MD) optimizer can be 
highlighted here as an example of improved data utilization. Wet end 
stability of the machine is a mirror to the runnability and the quality 
of the end product. Alone, grams per square meter (gsm) and other 
properties can’t give much info about what is actually causing quality 
defects. Variations in the retention loop can result in sheet breaks, 
as well as variations in quality parameters like gsm, moisture, and 
holes. MD optimizer can integrate the data from the retention sensors, 
web monitoring sensors and the web inspection systems in a single 
report (Figure 1). This quality map enhances the decision-making 
capabilities of the process supervisor and results in less breaks and 
quality rejects.

Figure 1. Integrated Quality Map from MD optimizer.
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For process area APC control, benefits have been documented during multiple years of pulp and paper 
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While the purpose of APC optimizers is to make the individual 
process areas work optimally and while their optimized KPIs also 
contribute to the overall mill performance, interactions between 
process areas generate bottlenecks for production and quality, as a 
whole. Coordination of the individually optimized process areas and 
prediction of the future mill balance are essential for pushing the 
total production towards higher-level KPIs. Mill-wide optimization 
is presented in the next subsection as an analytical solution for this 
purpose.

Increased Autonomy through Mill-Wide Optimization

Mill-Wide Optimization (MWO) is a real-time advisory solution 
for optimizing an entire pulp and paper mill, either as “planning” 
applications for providing future process area targets, or as 
“tracking” applications for tracing the upstream or downstream 
impact of process operations and disturbances. The solution is 
based on the mathematical optimization of a flowsheet model 
of the mill (high-level digital twin). The flowsheet unit modules 
contain the relevant input–output relationships for the optimization 
problem, identified based on historical or design data of the mill. 
Pulp and liquor components and properties are tracked throughout 

the flowsheet. The process equations, objectives, constraints, and 
discrete future events like production stops together form the 
optimization problem, which is solved on an equation-oriented basis 
[9]. Mathematical optimization is a key technology in the field of AI 
[7-8], as it leverages the inherent knowledge embedded in analytical 
process and performance models in a systematic way. Solving a 
properly defined optimization problem guarantees that the best 
possible process area targets and trajectories are obtained based on 
the desired KPIs, up-to-date process data, and formal mathematical 
theory. In comparison, optimality can typically not be similarly 
guaranteed for pure machine learning (ML) solutions.

The mill-wide optimization problem is configured and periodically 
solved alongside the mill (Figure 2) in a dedicated MWO online 
platform. The model equations are continuously adapted based on 
process data from the distributed control system (DCS) of the mill, 
and each optimization cycle is started from the current mill state. In 
addition, “what if” scenarios can be optimized in a separate planning 
mode. The user interface mainly consists of a compact flowsheet 
view of the mill, which enables the user to adjust current and future 
production limitations and view the optimized production target 
trajectories and bottlenecks.

 
Figure 2. Simplified cycle of the real-time mill-wide optimization solution. 
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For each optimization cycle, the mill personnel review the MWO 
results, and accepted targets can be implemented as process area 
setpoints. As a result, mill operators, engineers, and management can 
base daily production decisions on the online balance and forecast 
of the mill, highlighting the importance of analytical process models 
for informed decision-making. The mill-wide model also ensures 
that operating decisions are coordinated towards higher-level KPIs. 
The interaction between the mill staff and the MWO solution as an 
open-loop advisory system ensures the practical relevance of the 
optimization results.

RESULTS AND DISCUSSION

MWO Case Study Setup and Audit

MWO was implemented as mill-wide production planning for a 
market kraft pulp mill in the case study. The purpose was to optimize 
current and future production rate targets for eleven process areas to 

maximize pulp production at the digester. Secondary objectives were 
defined for tracking inventories towards their setpoints and avoiding 
excessive production rate changes. The case study concerned the 
basic production planning setup that focuses on pulp, liquor, and 
lime inventory management for pushing production on a mass and 
volume basis, although this setup can also be modified e.g. with a 
steam and power model layer.

The predicted optimization horizon was 72 hours, with an automatic 
optimization frequency of 30 minutes. The interactive user interface 
was implemented in the mill DCS environment, with a similar 
user experience to Figure 3. In addition to the optimized future 
trajectories and the current optimized targets, the “open-loop” 
levels of inventories were also shown on the main display, as well 
as the process area bottlenecks. These bottlenecks indicate where 
increasing the overall pulp production would require exceeding 
process area minimum or maximum limits.

 
Figure 3. Production planning demo, showing optimized production rates (green values), optimized 
trajectories (dashed lines), and predicted open-loop levels (blue) for a 12h paper machine stop and 
related recovery boiler load reduction. Full and partial bottlenecks are shown with colored frames. 
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The MWO solution helped the mill to evaluate the feasible digester 
production target, and having continuous access to an up-to-date 
mill balance contributed to an increased confidence to push cooking 
production targets [9]. MWO production planning also provided 
a tool for debottlenecking the process by testing the impact of 
individual process area limitations (Figure 4). Avoiding production 
losses through planning of upcoming process area stops and 
slowdowns, and reacting to unplanned process area disturbances, 
were seen as important functions of the tool.

Figure 4. Debottlenecking investigation, where the cooking maximum limit was relaxed 
to discover the next bottlenecks (red frames) at the evaporator and recovery boiler, 
revealing a maximum improvement possibility of 5.7% in this case, if cooking was 

pushed beyond its maximum limit.

The monitoring period highlighted how MWO can help build 
collaboration between process areas, shifting decision-making 
from reactive and department-centric to proactive and mill-centric, 
especially for the coordination between the fiber line and the 
recovery line during production rate changes. The MWO solution 
also provided different shifts and operators with an ability to make 
decisions in a repeatable way based on process data and proven 
algorithms. This emphasizes the role of analytical model approaches 
in AI-based systems, as alternative technologies like ML would 
require large amounts of training data to ensure a similar degree 
of repeatability, and extrapolation outside the training data can be 
unreliable.

Conclusion

As the pulp and paper industry faces new challenges and opportunities, 
both individual process areas and overall mill production efficiency 
need to be optimized using AI-powered decision-making tools. 

Empowered by advanced solutions for monitoring, analysis, control, 
and optimization, mill roles will evolve towards orchestrating and 
supervising mill operations, and pushing production towards higher 
efficiencies, lower costs, and increased sustainability. Providing mill 
personnel with reliable, functional, and understandable solutions 
for running mill operations becomes especially important when 
the most experienced operators and engineers are retiring from the 
workforce, as optimizing the production has largely relied on their 
process knowledge and manual calculations in the past.

The advanced process control and mill-wide optimization case 
examples of this paper highlight the benefits of these technologies 
for pulp mills, as well as the role of analytical models in the AI 
era. Solutions like mill-wide optimization employ analytical models 
for optimizing mill performance in a transparent mathematical 
framework, providing a direct way to leverage embedded process 
knowledge for more informed decision-making. The impact of 
individual process and tuning parameters can be observed and 
adjusted more clearly than in a pure machine learning approach, and 
solution optimality is guaranteed. On the other hand, the optimization 
setup also needs to be configured carefully and maintained by the 
mill, and managing the tradeoff between many objectives can be 
challenging. Furthermore, generative AI is typically more suited 
for generating non-conventional and desirable suboptimal solutions 
than analytical AI approaches. As a result, the authors believe that 
analytical and generative AI together form a solid foundation for 
pursuing autonomous operations in the pulp and paper industry.
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