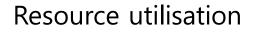


Seshasayee Paper and Boards Limited, Erode

Al-Driven Pulp Bleaching: Achieving Significant Reductions in Chemical Usage

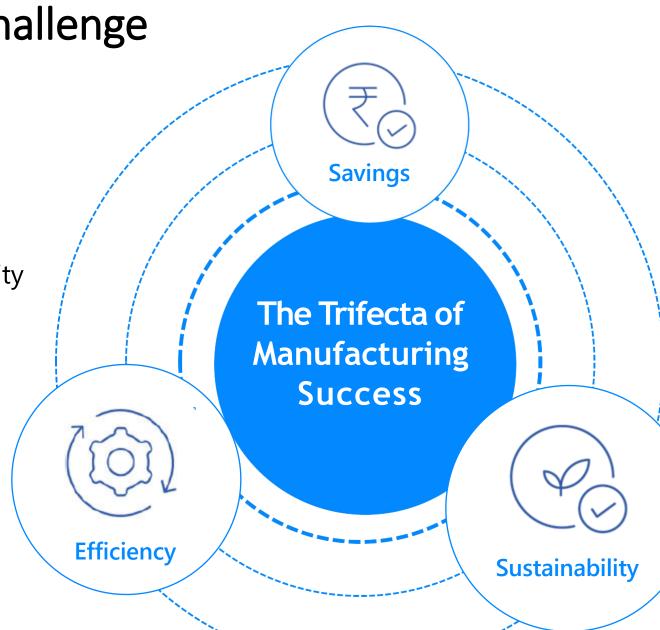
A Case Study at Seshasayee Paper and Boards Limited (SPB)


Team: Mr. B V Sivakumar & Mr. D.Radhakrishnan

"Without standards & Measurements, there can be no improvement"

The Pulp & Paper Industry Challenge

Resource Raw material availability


Adaptability and scalability

Quality compliance utilization

Supply chain efficiency

The Bleaching Process & Traditional Control

• Remove lignin and impurities to achieve desired brightness.

Limitations of Traditional Methods

- Reliance on fixed parameters
- Operator experience
- Difficulty adapting to raw material
- Process variability
- Over-consumption of bleaching chemicals
- Inconsistent product quality
- Increased environmental burden

Cooking: RDH Technology ODL: 2 stage Bleaching sequence: D0->Eop-> D1 ISO Brightness: 86

The Power of Al

Real-time monitoring and insight-driven decision making

to reduce wastage, identify inefficiencies, and enable cost savings

Transparency and accuracy in data to promptly identify incidents, facilitating swift issue resolution.

Unified Central System

A role-based platform for data tracking across all manufacturing stages, ensuring easy access to records for informed process optimization.

Easily accessible data for streamlined audit and sustainability reporting

A streamlined system ensuring uniform quality to elevate customer satisfaction

- Al offers precise control, optimized chemical usage, enhanced product consistency, and improved sustainability.
- Learns from vast amounts of data to identify complex relationships.
- Enables dynamic adjustments to process parameters.

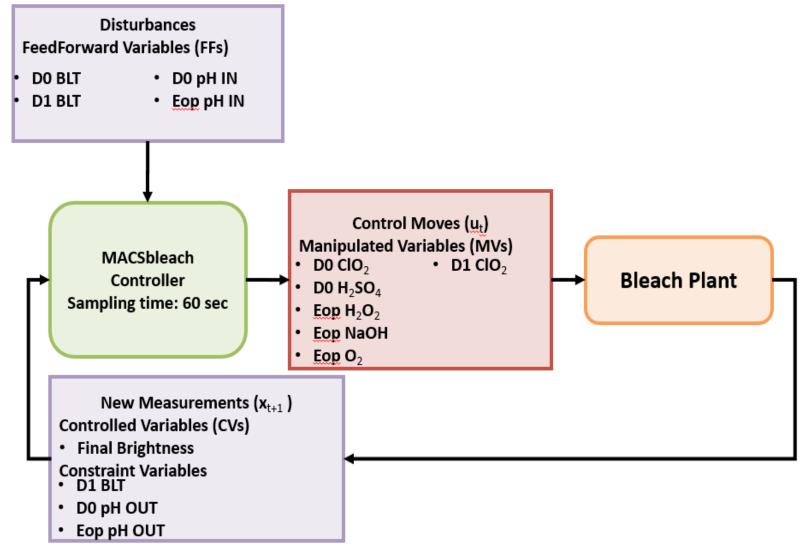
AI-Driven Solution in Bleach Plant operations

The objective of the bleach controller

- Reduce final brightness variability.
- Minimize the chemical consumption maintaining the final brightness

Controlled by

- Optimal pH set points for the inlet of DO, and the inlet of Eop stages.
- Optimal Acid, Chlorine Dioxide, Caustic dosages in each stages of the bleach plant to minimize variability in final pulp brightness.


Software used:

• MACS - Multivariable Advanced Control System software is a Model based Predictive Controller (MPC).

AI Solution Overview

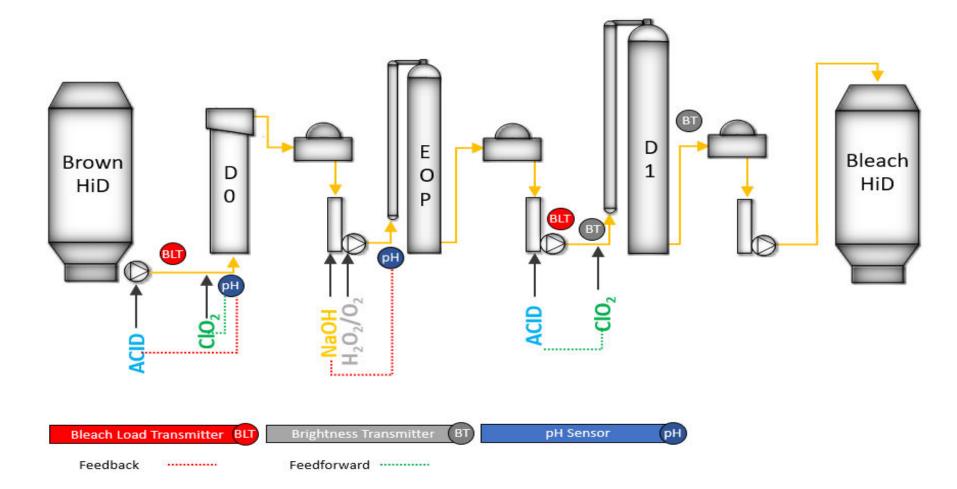
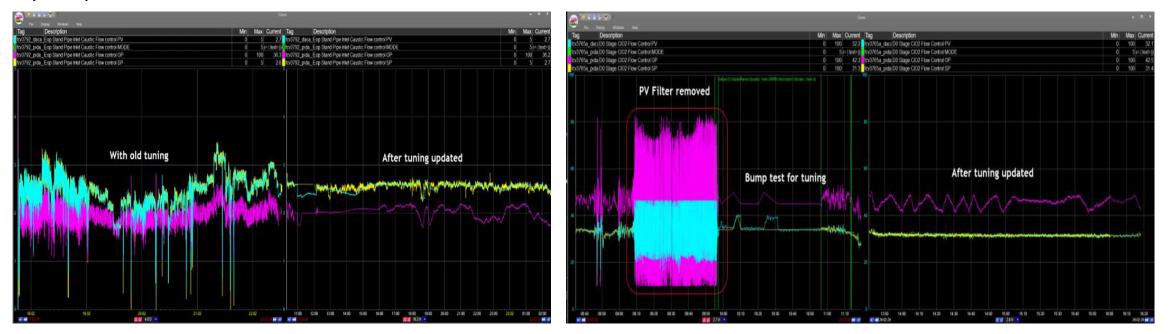
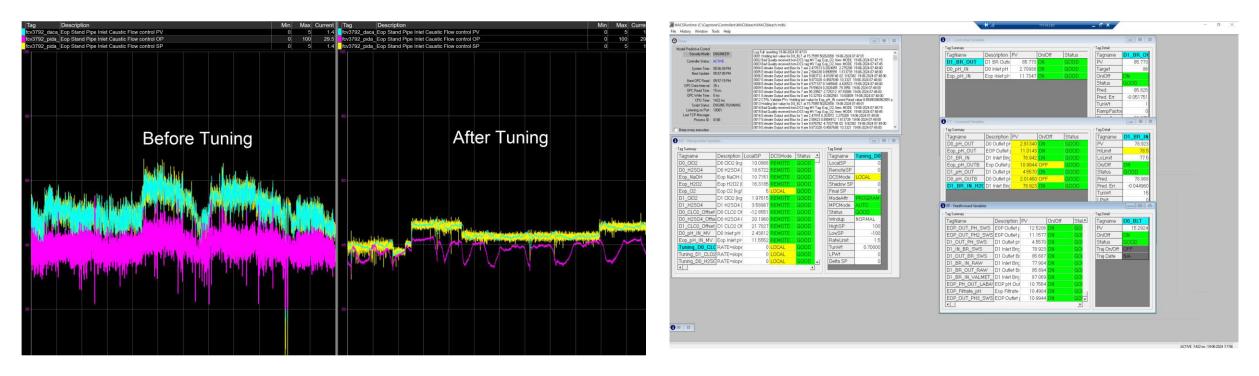

- The key components:
 - Machine learning algorithms.
 - Advanced data analytics.
 - Predictive modeling.

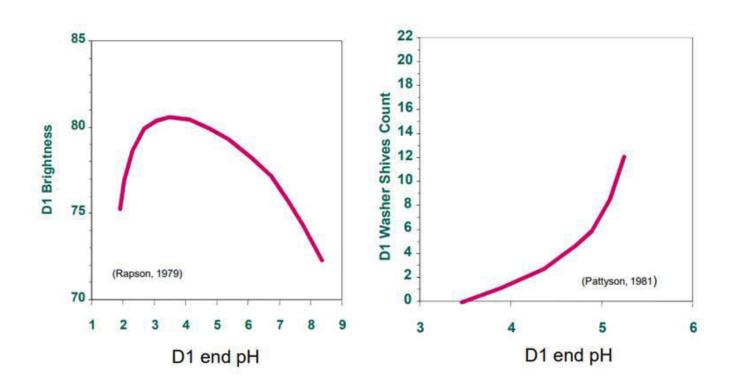
Diagram illustrating The AI system architecture.

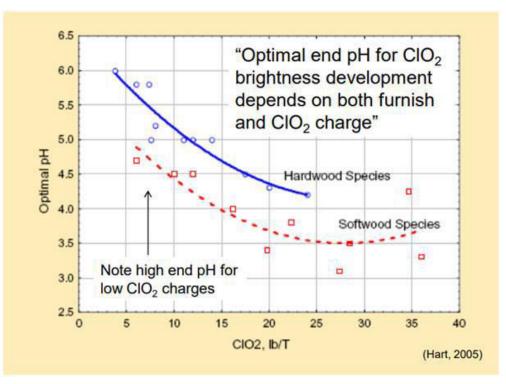

Advanced control strategies

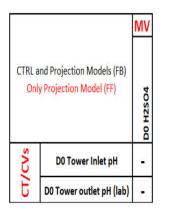
Integration of Feedforward & Feedback control

Results from Loop Tuning , Analytics, Loop Analytics

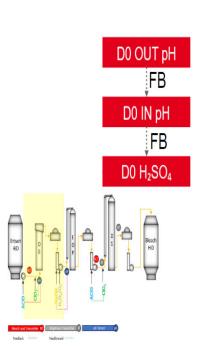

- Effective regulatory loop tuning ensures that control loops are responsive and stable.
- Implementing the recommended tuning parameter adjustments has significantly improved the stability of control loops important for MACSbleach control.


System Online - Model Improvements and Tuning


- Dynamics limit based on Kappa factor for D0 ClO2, to address the sudden swings in incoming kappa.
- Eop NaOH to outlet pH control, key improvement was using Eop filtrate pH in controls.
- D1 feed forward and feedback control to achieve maximum variability reduction in Final Brightness.
- D1 Acid Control, no online pH measurement, used D1 ClO2 & Eop Filtrate pH as feedforward and D1 vat pH (lab) as feedback signal.

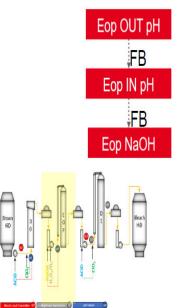

Optimizing pH for Bleaching Effectiveness

- The crucial role of pH in each stage.
- Acid and caustic stage
- Graph showing the optimal pH range for different stages.

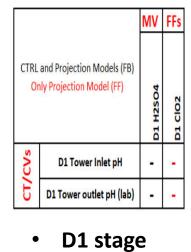


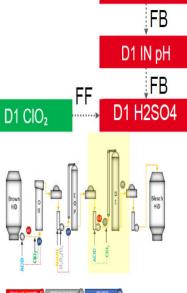


Tailored Control for Each Bleaching Stage



D0 stage •





EOP stage ٠

lerdbrwad

D1 OUT pH

HiD

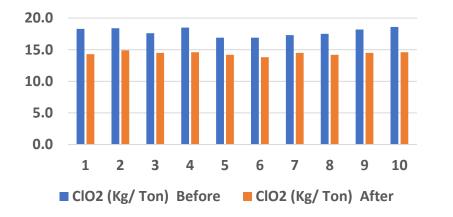
Leveraging SWS for Enhanced Control

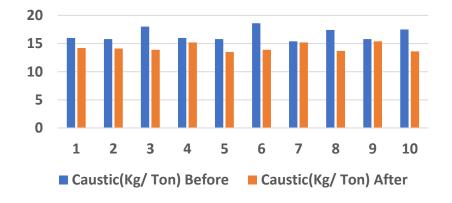
- When sensors such as pH, Brightness sensors are coated, the values provided by the soft sensor become even more important.
- The soft sensor values are generated based on data entered by the operator, and the system automatically adjusts according to the programmed AI conditions

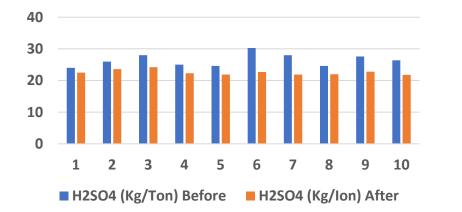
Dashboard & Trends

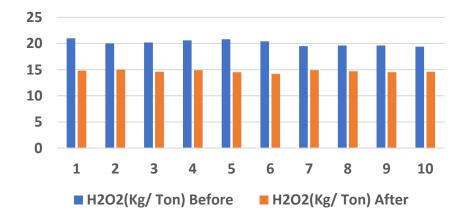
- Dashboard & Trends are available in Operator Control Room.
- Operators can see the future predictions for MVs and CVs on trends.

Real-time Visualization and Dashboard

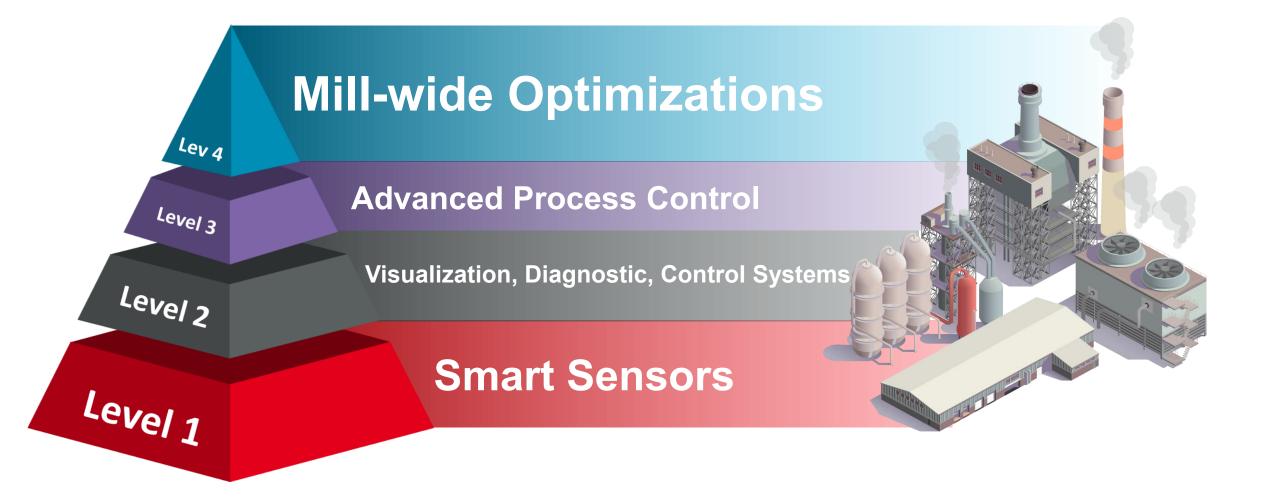

	NG SCI	R & BSW#	4 ODL18	2 SYS PO	1 & 1A TRP	DO_BLEACHIN	EOP BLEACHIN					TALIZERS	
MASTER ON					BI	IG FIRST OUT	CONTROL	READY	WDOG				
PROCESS VARIABLES		ON / OFF			PV (Kg/T)	SP (Kg/T)	STEADY STATE	SP MIN	SP MAX	WINDUP	LAST MOVE		
		BTG DCS		CAS 11.12		10.58	10.60	10.50	13.80		0.00		
🔵 D0 H2SO4	PI	BTG	DCS	CAS	19.68	20.09	20.09	20.00 10.50 16.00 1.80	28.00		0.00 -0.01	- 22	
🔵 Eop NaOH	Pi	BTG	DCS	CAS	11.87	11.37	11.34		15.0 <mark>0</mark>			_	
eop H2O2	PI	BTG	DCS	CAS	18.97	19.00	19.00		18.50		0.00		
🔵 D1 ClO2	PI	BTG	DCS	CAS	3.76	3.71	3.71		3.80		-0.00		
O 1 H2SO4	PI	BTG	DCS	CAS	3.18	3.09	3.09	3 <mark>.00</mark>	5.50		0.00		
CONTROLLED VARIABI	ES	ON /	OFF	PV	STEADY	PV MIN	TARGET	PV MAX	WINDUP	LAB	VALUE MA	ANUAL EN	ITRY
					STATE	F & Ivilly	i innori	F V IVIAA		1.13		TIME	LAB
D0 Inlet pH		ON 2.61		2.61	2.62	2.40	2.74	2.80		TRP kap		2.30	1
D0 Outlet pH		ON 2.40		2.40	2.40	2.40		2.80		D0 pH VAT		10.30	1
Eop Inlet pH		01	ON 10.93		11.11	10.50	11.11	11.30	D1 pH			10.30 10.30	
cop met pri										CLO2 Strenght		6.00	
Eop Outlet pH		01	V	10.70	10.67	10.50		10.90		NaOH Strenght		6.30	1
D1 Outlet pH ON		N	4.10		4.00	See.	4.50		D0 out Bright		10.30	6	
D1 Inlet Brightness		ON 77.20		77.81	75.80		77.20			t Bright	10.30	7	
				10					D1 out Bright		10.30	8	
D1 Outlet Brightness		ON 84.49		84.72		85.80					FPV	1	


Overall Performance


	Units	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	This yea
General															
Production	adt/d	-	-	459	468	473	475	463	471	479	416	417	395	432	454
Process uptime	%	-	-	95%	94%	93%	94%	91%	94%	95%	61%	67%	63%	87%	85%
MACS uptime	%	-	-	19%	87%	88%	82%	72%	85%	73%	69%	70%	60%	62%	70%
(appa & Brightness															
00 inlet Kappa	Карра	-	-	12.1	12.3	12.1	11.8	11.6	11.7	11.2	11.2	11.8	12.1	11.6	11.8
01 inlet Brightness	%ISO	-	-	76.2	77.5	77.7	77.9	77.8	77.9	78.1	77.6	77.8	77.8	78.0	77.7
inal Brightness (LAB)	%ISO	-	-	85.6	85.3	85.7	85.8	85.8	85.5	85.6	85.2	85.2	85.3	85.5	85.5
inal Brightness (SWS)	%ISO	-	-	84.5	85.4	85.7	85.8	85.8	85.5	85.6	85.2	85.3	85.4	85.5	85.5
H															
00 inlet pH	pH	-	-	2.5	2.7	2.6	2.7	2.8	2.7	2.6	2.6	2.5	2.7	2.6	2.6
00 outlet pH	pH	-	-	2.4	2.5	2.5	2.6	2.5	2.5	2.4	2.5	2.5	2.5	2.4	2.5
op Inlet pH	pH	-	-	11.3	11.1	11.4	11.4	11.3	11.4	11.8	11.8	12.2	11.9	12.1	11.6
Eop outlet pH	pH	-	-	11.0	10.8	10.5	10.6	10.7	10.4	10.6	10.8	10.6	10.6	10.7	10.6
01 outlet pH	pН	-	-	6.8	4.3	3.9	3.8	4.1	4.1	4.6	4.3	4.2	4.1	4.4	4.3
Chemical Dosage															
Total CIO2	kg/adt	-	-	15.8	15.0	14.2	15.0	14.7	15.1	15.7	16.2	16.6	16.1	16.1	15.3
fotal CIO2 (baseline)	kg/adt	-	-	16.6	16.5	16.5	16.4	16.4	16.4	16.3	16.3	16.4	16.5	16.4	16.4
Total NaOH	kg/adt	-	-	12.0	11.0	9.7	9.9	10.1	12.2	11.6	11.7	12.2	12.5	12.4	11.2
fotal NaOH (baseline)	kg/adt	-	-	14.4	14.3	14.1	13.9	13.8	13.8	13.3	13.4	13.9	14.1	13.8	13.9
Total H2O2	kg/adt	-	-	18.2	16.0	15.0	15.9	14.9	14.9	16.1	15.7	15.3	15.2	15.1	15.5
fotal H2O2 (baseline)	kg/adt	-	-	16.0	16.0	15.9	15.9	15.9	15.9	15.8	15.8	15.9	15.9	15.9	15.9
Total H2SO4	kg/adt	-	-	25.7	21.7	21.4	18.7	18.5	24.5	21.9	26.2	31.3	29.4	28.9	23.5
fotal H2SO4 (baseline)	kg/adt	-	-	21.6	21.1	19.8	18.7	17.7	18.1	16.3	16.9	18.7	19.9	18.2	18.7
avings															
CIO2 savings	€/adt	-		1.57	3.39	4.94	3.15	3.78	2.90	1.26	0.30	-0.36	0.76	0.62	2.42
VaOH savings	€/adt	-	-	1.21	1.67	2.23	1.99	1.83	0.80	0.85	0.87	0.84	0.79	0.69	1.34
Total savings	€/adt	-	-	2.78	5.06	7.17	5.14	5.61	3.70	2.11	1.17	0.48	1.55	1.31	3.76
Monthly savings	€/Month	-		37363	67012	97370	68664	72959	51067	28623	9199	4047	11954	15217	42134
Control usage (MV ON)	-,														
00 CIO2	%	-	-	24%	96%	96%	95%	94%	96%	97%	84%	86%	75%	90%	85%
00 H2S04	%	-	-	26%	94%	96%	95%	93%	97%	97%	83%	71%	68%	82%	83%
Eop NaOH	%	-	-	26%	92%	92%	91%	75%	90%	78%	77%	78%	75%	72%	77%
top H2O2	%	-	-	25%	92%	93%	98%	94%	94%	53%	63%	73%	69%	80%	76%
01 CIO2	%	-	-	20%	92%	91%	88%	93%	94%	93%	77%	80%	68%	80%	80%
01 H2SO4	70	-	-	20%	94%	91%	0070	9376	9470	9370	//70	0076	0876	80% 7%	80%


ClO2,H2SO4,NaOH and H2O2 - Before and after 10 months data

• Bar graph showing chemical usage before and after.




Benefits Achieved

- ClO2 : Reduction in consumption by 1.0 Kg/Ton Savings
- Caustic: Reduction in consumption by 1.2 Kg/Ton Savings
- Acid: High Scope for reduction by adjusting the D0 inlet pH.
 - Need to find the optimum pH to avoid the scaling issue in D0 Washing
- Additional Benefits:
 - Reduction in Paper Machine OBA is an additional cost benefit
 - GHG emission:
 - 1 kg of ClO2 -> 1.56 kg of CO2
 - 1 kg of NaOH-> 1.35 kg of CO2

Roadmap to Sustainable Optimization

Artificial intelligence is not a substitute for human intelligence; "It is a tool to amplify human creativity and ingenuity."

Proud to be a Responsible Paper Maker

