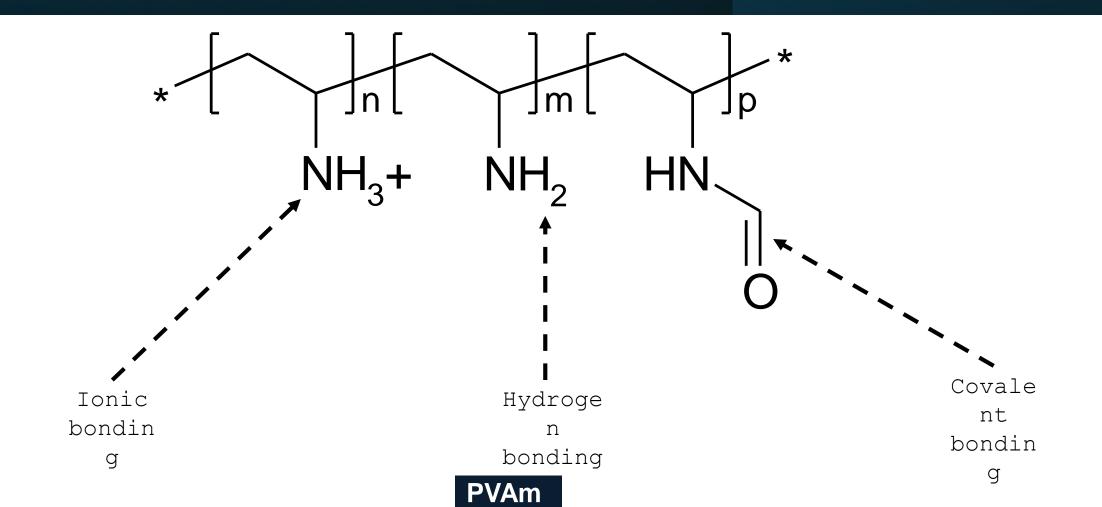
The Strength, Cost, and Sustainability Solution

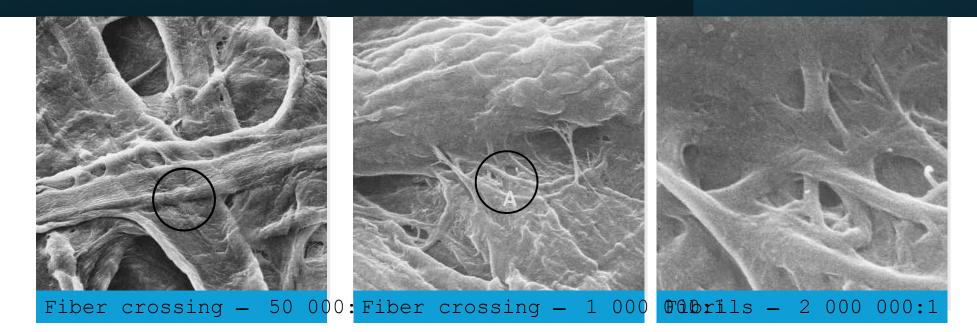
Optimizing Kraft Paper and Fluting Media with PVAm Chemistry

Transform ing Kraft Paper & Fluting Media with PVAm

PVAM: A BREAKTHROUGH IN SYNTHETIC STRENGTH FOR PAPER GRADES.

ENHANCED BONDING, COST EFFICIENCY, AND ENVIRONMENTAL SUSTAINABILITY.


PROVEN APPLICATIONS IN KRAFT PAPER AND FLUTING MEDIA.


Dry strength resins : benefits

gPAM Retention	Drainage	Fixation	Strength
PVAm Retention	Drainage	Fixation	Strength Runnability
C PAM Cat Polyacrylamide Retention	Drainage		Strength
APAM An Polyacrylamide Retention	Drainage		Strength
Am PAM Am Polyacrylamide Retention	Drainage		Strength

PVAm: Chemistry

General Interaction mechanism of PVAm : Fiber crossing with fibrils

Average dimensions:	
Fiber length	2,000 µm
Fiber diameter	25 µm
Fibril diameter	0.1 μm

Strength Resins : Chemistries/Function

	Dry Strength	Wet Strength Permanent	Wet Strength Temporary	Initial Wet Web Strength	
Product		reimanent	remporary	Screngen	
Polyacrylamides	Yes	No	No	No	
Glyoxalated Polyacryamides	Yes	Yes, at high amount	Yes	No	
Polyvinylamine	Yes	Yes, at high amount	Yes	Yes	
Urea/Melamine Formaldehyde	Some	Yes	No	No	
Starch	Yes	No	No	No	

Dry Strength Additives Overview

- Dry strength is a critical paper/board parameter for many grades.
- It is due primarily to **fiber-fiber bonds** formed during sheet consolidation and drying.
- Sheet strength is dependent on:
 - individual fiber strength
 - strength of fiber-fiber bonds
 - number of bonds (bonded area)
 - fiber and bond distribution (Sheet formation)

Interaction of dry strength agents : Chemical bonds with cellulose

Interaction	Hydrogen	Ionic	Covalent
	Bonding	Bonding	Bonding
Energy	4-6	10-30	60-80
	kcal/mole	kcal/mole	kcal/mole
Chemicals	Cellulose, Starch, CMC, PVAm , gPAM, Hofmann	<pre>PVAm, dual Polymer Systems, amphoteric Copolymers (i.e., amphoPAM),</pre>	Glyoxalated Polyacrylami de (gPAM), PVAm

Resins: PVAm resins are more Brendfyits strength adds. They are at the <u>center of a</u> whole concept to improve the profitability of the papermaking system and the quality of the produced paper,

Increased Strength Properties, Maintain Bulk,

Fiber Substitution Refiner Reductions Maintain Easier Drying, Porosity Lower Energy Costs, Higher Machine Speed,

Runnability, Sheet formation, Cleaner White Water,

All translates to: Improved PM runnability, Higher product quality, Lower production cost

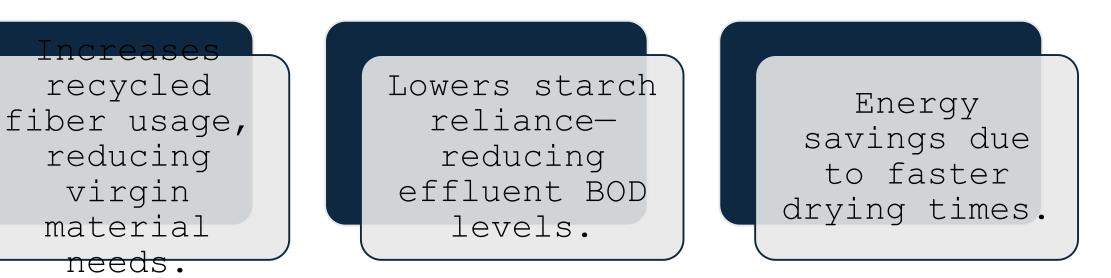
PVAm's Key Advantage s for Kraft & Fluting Media

Enhanced Strength: Improves tensile strength and durability.

Better Drainage: Accelerates water removal, reducing drying time.

Cost Efficiency: Cuts energy costs and raw material reliance.

Environmental Compliance: Reduces BOD levels by lowering starch use.


Strength Improvements in Kraft Paper

Optimized Drainage for Faster Production

PVAm promotes better retention of fines and fibers. Enhances machine efficiency by reducing water content faster. Supports high-speed production without quality compromise.

Cost Efficiency and Environmental Sustainability

PVAm Chemistry at High Machine Speeds

Ideal for highspeed Kraft and fluting media machines. Cationization stabilizes the wet-end, minimizing downtimes. Increases productivity by promoting consistent sheet formation.

PVAm Benefits

The customers are usually looking for a solution to:

Fix a strength problem and/or Reduce costs

To fix an issue, a clear understanding of both points (the problem itself and the system) are required.

Reducing costs comes typically through: Substitution of cheaper fiber (recycled) Reduction of the energy cost Increase PM speed. Improve the PM runnability,

 \checkmark

Or, Improve the Paper/Board quality Improve paper strength Maintain bulk properties Maintain porosity

Case study 1 : Strength improvement

Overview

Grades:	Coated Board
Furnish:	100% RCF
Ash:	None
Filler:	No fresh filler
pH:	Neutral
Production	: 40 T/h
Basis weig	ht: $250 - 550 \text{ g/m}^2$
PM:	Fourdrinier, 4 plies
PM _V :	200 - 500 m/min

Current Wet-End

Conductivity: 1400µS/cm Wet End chemicals: PAC, CPAM, APAM Dry Strength: Cationic starch, spray starch

Objectives

- 1. Increase the scott bond
- 2. Reduce wet-end chemicals consumption

SNF Approach

 Application of 6kg/T of PVAm in the machine chest of Under, Top and Center layer CASE

- 2. Keep stable the Wet End conditions and optimize PAC and CPAM consumption according to Cat. Demand and retention levels Results
- 1. +30% of scott bond
- 2. PAC switched off
- 3. Reduction of 50% on CPAM consumption

Case study 2 : Strength improvement

Overview

Grades: Testliner Furnish: RCF, 1.02 / 1.04 Ash: None Filler: No fresh filler pH: Neutral Production: 18 T/h Basis weight: 90 - 180 g/m² PM: Fourdrinier, 2 plies and No Size Press PM_v: 700 - 1050 m/min

Current Wet-End

Conductivity:	3000µS/cm	l	
Wet End chemicals:		TOP	: PAC,
Polyamine, CPAM,		Bent	onite
	BOTTOM :	PAC,	Polyamine,
CPAM			

Sizing agent: ASA

Objectives

- 1. To reach TL3 burst Index
- 2. To optimize the Wet End chemistry

Approach

 Application of PVAm out of the machine chest and APAM in the fan pump

Results

- 1. +40% of burst Index increase : TL3 level reached
- 2. PAC switched off
- 3. 25% reduction in ASA consumption

Overview

Grades:	Core Base Paper
Furnish:	RCF, 1.02 / 1.04
Ash:	None
Filler:	No fresh filler
pH:	Alkaline
Production:	6 - 8 T/h
Basis weigh	$400 - 500 \text{ g/m}^2$
PM:	Fourdrinier
PM _v :	60 m/min

Current Wet-End

Dry strength: Cationic starch in Wet End, Native starch starch in size press

Objectives

- 1. Increase productivity
- 2. Reduce wet-end and spray starch

Approach

- 1. Application of 20 kg/T of PVAm
- 2. Elimination of wet-end starch
- 3. Eliminate refining

Results

- 1. Production increase by 8 %
- 2. Better dewatering
- 3. Wet-end starch on some grades eliminated, on other grades reduced by 40 %
- 4. Reduction in Native starch approx. 20 %
- 5. Save refining energy

Conclusio

n

• PVAm: A Sustainable Future for Kraft & Fluting Media

- Superior strength, cost savings, and sustainability.
- Essential for highperformance, environmentally responsible production.
- Proven technology to meet industry challenges in strength and cost efficiency.

"Let's work together to transform Kraft and fluting media with PVAm Chemistrydelivering strength, efficiency, and s' inable in Axehem." Group