

LEVERAGING DATA ANALYSIS FOR PROCESS OPTIMIZATION AND PROCESS AUTOMATION JOURNEY IN TNPL

Mr. G. Venkataramanan, Manager (Inst)

Mr. K. Kumaresan, Asst. Manager (Inst)

Mr. P. Gopalakrishnan, Asst. Manager (Inst)

Mr. S. Arunachalam, Plant Engineer (Inst)

Under the Guidance of Mr. R. Rajalingam GM (Electrical and Instrumentation)

LEVERAGING DATA ANALYSIS FOR PROCESS OPTIMIZATION AND PROCESS AUTOMATION JOURNEY IN TNPL

As per Peter Drucker's quote 'What gets measured, gets managed'.

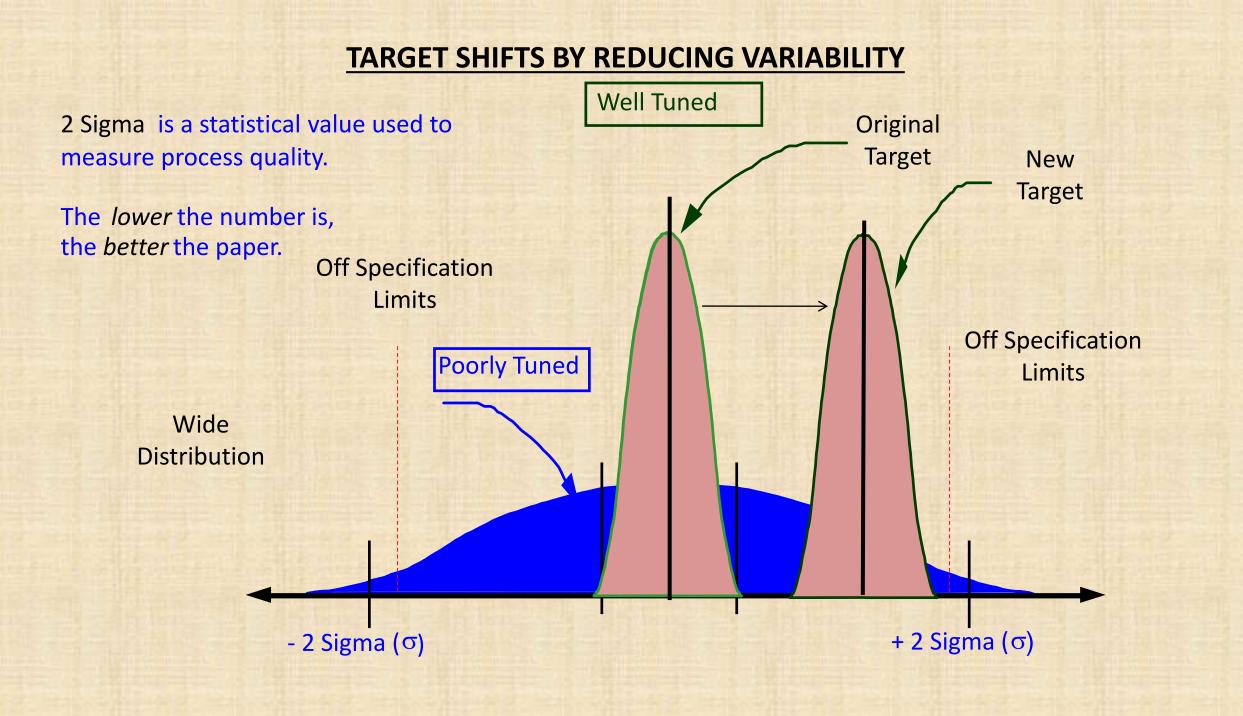
Case Study 1 – Process Optimization

Targeted to Reduce:

- Sheet Breaks
- Variations in Weight
- Grade Change Time

Case Study 2 – Resource Optimization

Resource Optimization focused on the following.


- Human Resources
- Wealth from Waste
- Improving Operational Comfort

MACHINE PERFORMANCE

REEL REPORT							
Machine		TNPL PM	#2	Product	Cre	amwove	60GSM
Reel No				Trim		659.7C	M
Product No							
		Pro	duction Sun	nmary			
			Standard		Actual		Efficiency
Production	Tons		18.99		22.2		116.91
Throughput	T/Hr		16.16		18.89		116.91
Reel Speed	MPM		680		832.1		122.37
Run Time	Hr:Min		01:11		02:24		
Lost Time	Hr:Min		00:00		00:00		
		C	Quality Anal	ysis			
	Actual	Target	Efficiency	MDS	MDL	CD	Total
Air Column	-0.23	1	-437.2	0.06	0.1	0.25	0.28
Ash	15.71	15.7	99.79	0.97	2.42	0.3	2.62
Basis Weight	58.22	58.3	100.19	1.35	0.6	1.01	1.79
Caliper	83.18	75	90.16	1.33	1.1	0.33	1.76
Conditioned Weight	54.74	54.8	100.16	1.19	0.55	0.77	1.52
Moisture	5.96	6	100.53	0.43	0.79	1.15	1.46

VARIABILITY - EVALUATION

	Long Term Performance of Machine- 2 Sigma as % of Process							
			PM2					
Parameter	Goal	48 GSM	50 GSM	55 GSM	60 GSM	70 GSM	80 GSM	All
Ash	< 4.5	8.74	8.09	7.44	6.89	6.34	5.76	7.21
Caliper	< 1.0	4.26	3.96	3.61	3.92	3.09	2.78	3.6
CONDWT	< 1.5	3.29	3.11	3.03	2.94	2.75	2.57	3
Moisture	< 10	24.92	25.24	28.62	29.11	31.13	31.65	28.5
WEIGHT	< 1.7	3.69	3.53	3.52	3.43	3.41	3.39	3.53
# Reels		3254 (11%)	5702 (18%)	6827 (22%)	3996 (13%)	2760 (9%)	1270 (4%)	23809 (77%)

Variability	Slow Side	Fast Side
MDS	0.0167Hz – 60Sec	10Hz – 0.1Sec
MDL	0.000277HZ-3600Sec	0.0167HZ-60Sec
CD	260 Inches	0.86 Inches

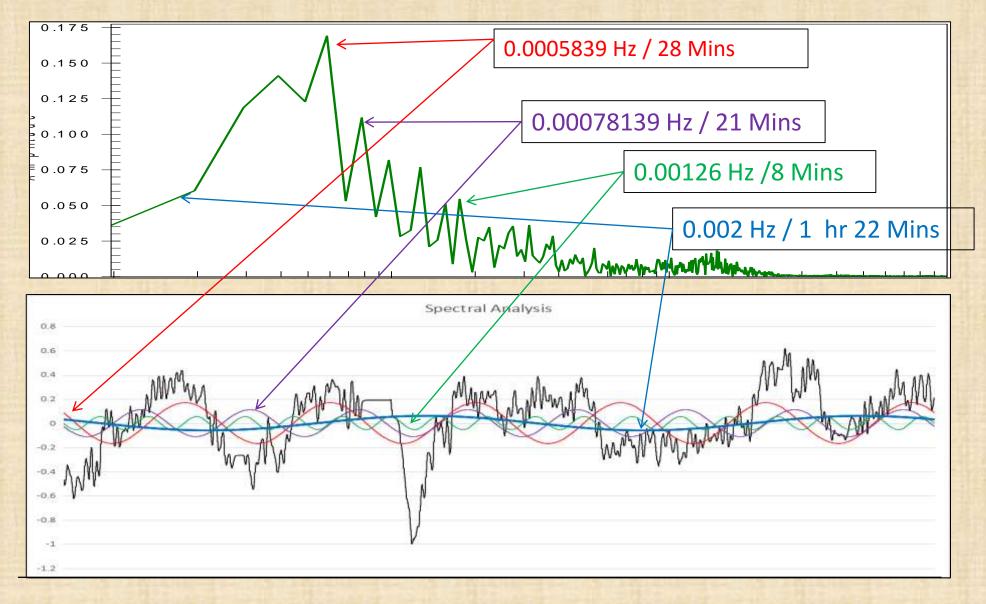
VARIABILITY - EVALUATION

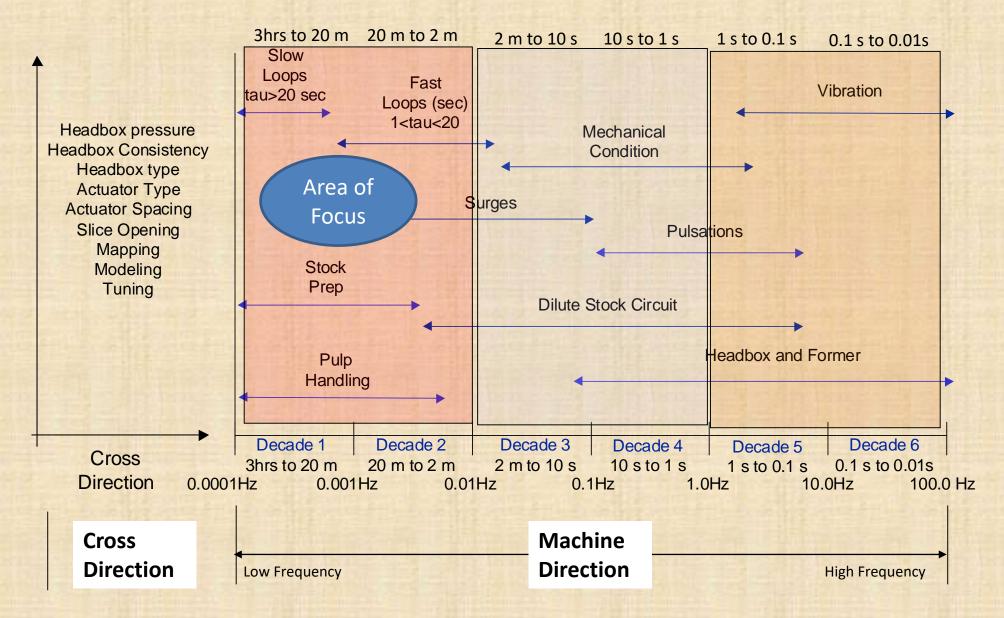
2 Sigma as % of Process

2 Sigma Variance Distribution(<u>70 : 20: 10 Rule</u>)						
Sensor	Goal	ASH	CALIPER	CONDWT	MOIST	WEIGHT
MDS	< 70	70.38	15.27	56.99	21.88	47.43
MDL	< 10	18.37	82.12	15.43	24.44	21.59
CD	< 20	11.25	2.61	27.58	53.68	30.98

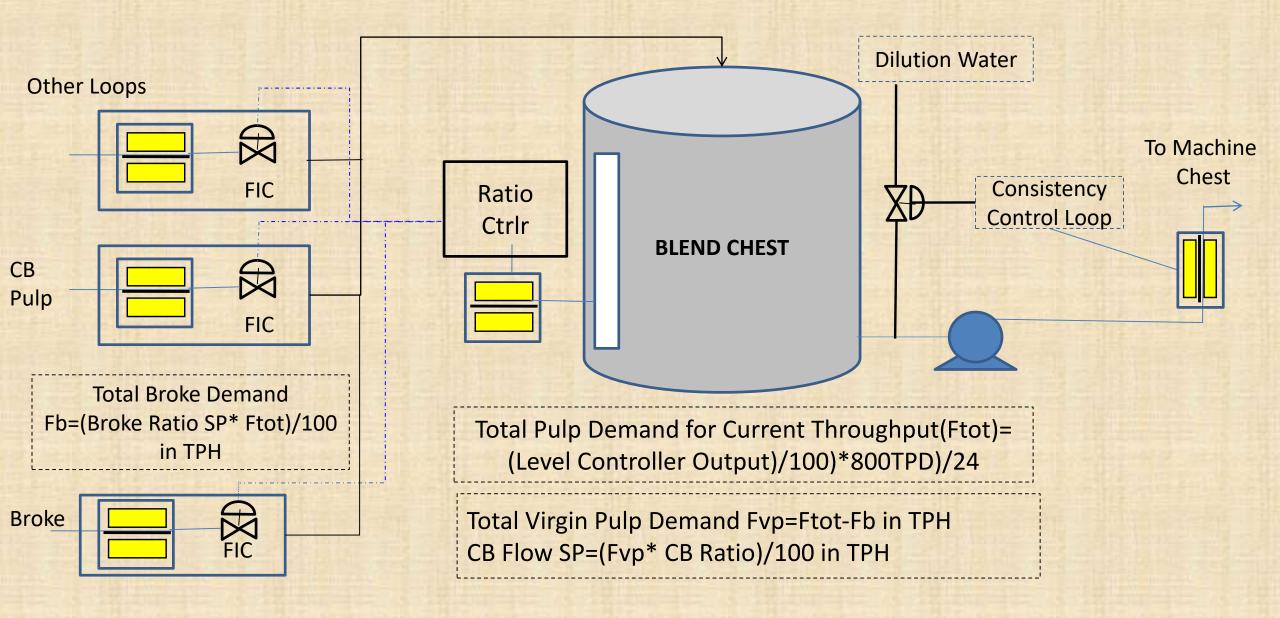
2 Sigina as 70 OF Process				
Goal	Actual			
< 4.5	7.5			
< 1	3.69			
< 1.5	3			
< 10	27.95			
< 1.7	3.53			
	Goal < 4.5 < 1 < 1.5 < 10			

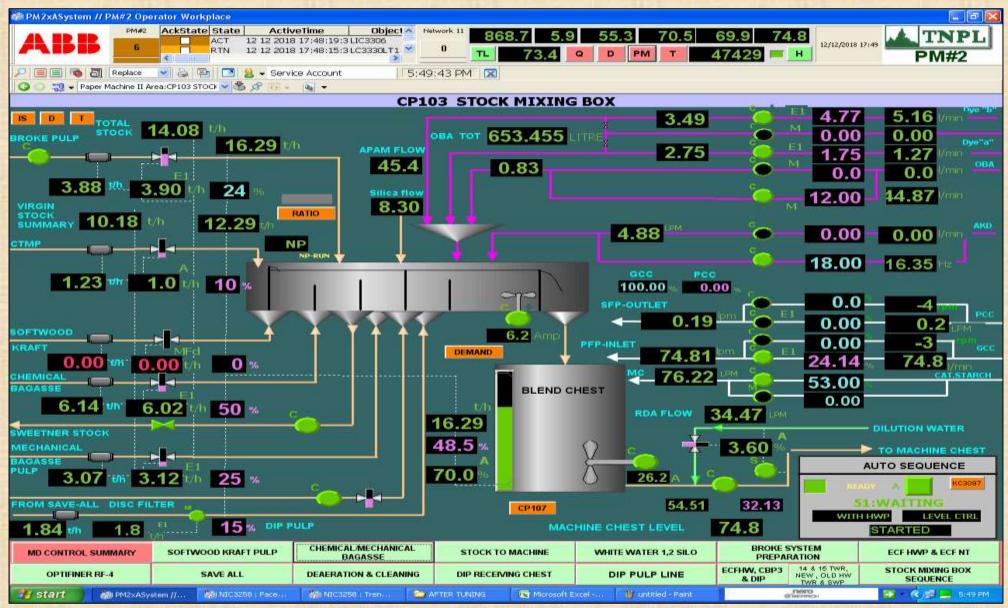
- Condition weight 2 sigma as % of process is almost double (3.0) ------<u>Needs Attention</u>
 - Most of weight variations are contributed by MDL (15.5) and CD (27.5%)
- Moisture 2 Sigma as % of process is almost tripled (27.9) ------<u>Needs Attention</u>
 - Most of moisture variations are coming from both MDL (24.5%) and CD (54%)
- Ash 2 Sigma as % of Process is 7.45 ------
 - Most of Ash variations are coming from MDL (18%)
- Caliper CD is excellent


OVERNIGHT REEL DATA INFERENCE – EVALUATION


Weight Statistics				
Number of Points	5500			
Number of Hrs	8 Hrs			
Sample Time	5s			
Max	60.7			
Min	59.1			
2 Sigma	0.799			
Average	60.1			
Skewness	-0.425			
Kurtosis	-0.0019			

TIME DOMAIN TO FREQUENCY DOMAIN ANALYSIS


Basis Weight Spectral Analysis


PROCESS SPECTRUM

PM#2 STOCK BLENDING CONTROL

PM#2 STOCK BLENDING OVERVIEW

IMPACT OF LOOP TUNING IN REDUCING WEIGHT VARIATION

Problems Faced

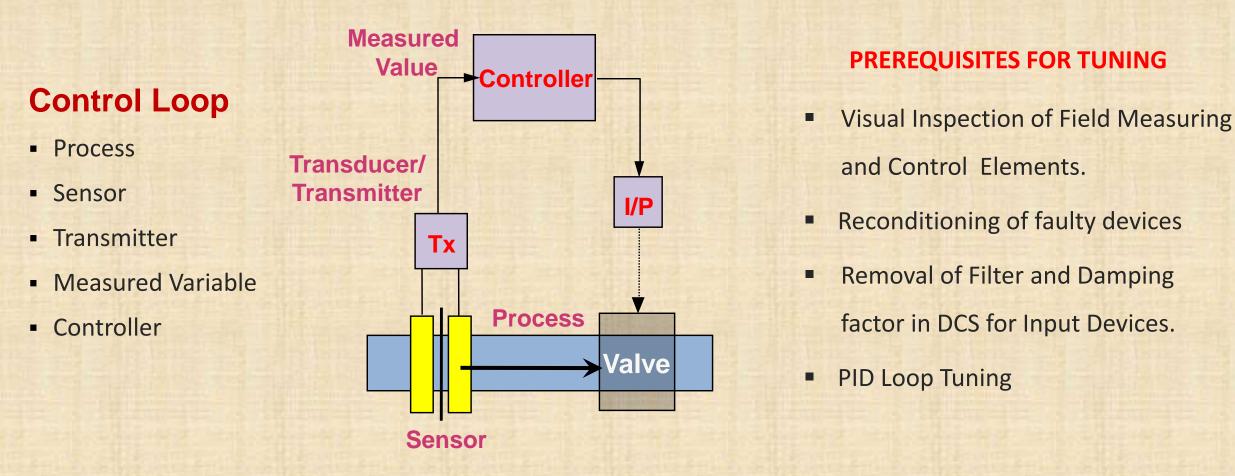
- Weight Variation
- Consistency Variation in Feed Pulp
- Blending Level Variation
- Quality rejections due to higher variability
- Frequent Sheet breaks

Root Cause

Dilution Water Pressure Variation

Action Taken

- Dilution Water Pressure fluctuation Controlled
- Flow, Level and Consistency Loops PID tuning done


Blend Chest Level Control

Results	Max	Min	Range	Кс	Ti
Before Tuning	71.6	68.6	2.75	3.5	120
After Tuning	70.7	69.69	1.06	4.8	480

84% reduction in BC Level Variation

CONTROL LOOP PERFORMANCE OPTIMIZATION

SELF REGULATING LOOP TUNING PROCEDURE

$$u(t) = K_{c}\left(e(t) + \frac{1}{T_{i}}\int_{0}^{t}e(\tau)d\tau + T_{d}\frac{d}{dt}e(t)\right)$$

PID Controller Output

THE PROCESS GAIN IS USED TO DEFINE THE STEADY STATE PROCESS CHANGE.

	Process Change	6	Change in Process (Y)
	Steady Sta Change	· p	Change in input (U)
Actuator Change	1 Time Constant=6 Steady State Value		

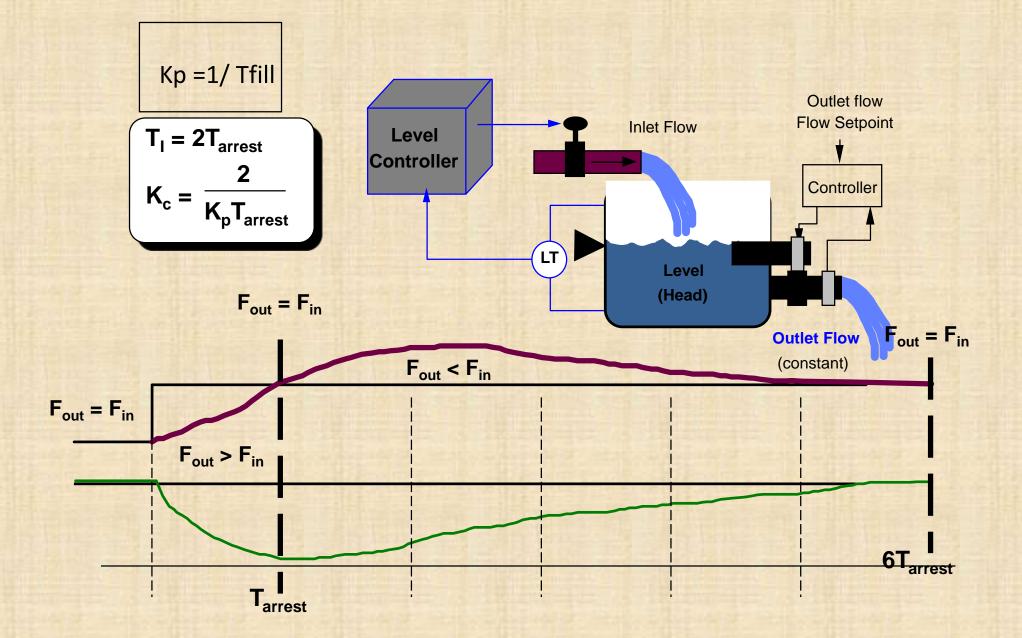
Method of Tuning Employed: Direct Synthesis

ARRIVING AT TUNING PARAMETERS

Controller Gain,
$$K_{C} = \frac{1}{K_{P} \tau_{Ratio}} \bullet \frac{MV Range}{Output Range}$$

$$K_p = \frac{5.3 - 4.6}{44 - 38} = 0.11$$

$$Kc = \frac{1}{(0.11 \times 2)} \frac{x}{100} = 0.13$$


Bump Test results: Valve Output change: **38% to 44%** Measured value change: **5.3% to 4.6%**

 τ_{P} =80/4=20Sec

Kc=0.11

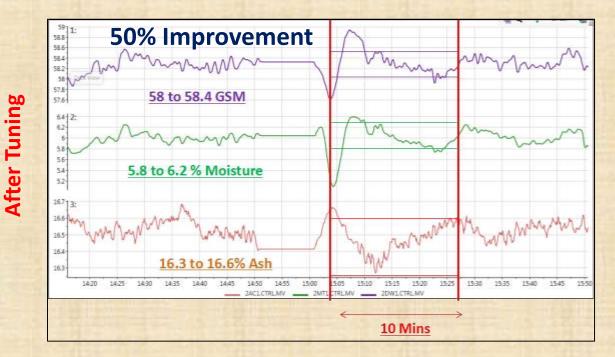
Ti=20Sec

INTEGRATING LOOP TUNING

LEVEL CONTROL LOOP TUNING PARAMETERS

Chest Capacity in M ³	100
Chest Capacity in L(100*1000)	100000
Inlet Pump Flow in LPM	2800
TFILL Time in Min (Tank Fill Time)=Chest Capacity/Inlet Pump Flow i.e(100000/2800)	35.714286
TFILL Time in Sec(35.714286 x 60)	2142.8571
Process Gain Kp=(1 / TFILL)	0.0004667
Tarrest= TFILL/2	1071.4286
Controller Gain Kc=(2 / (Kp x Tarrest))	4
Integral Time Ti(TFILL/4)	535.71429

IMPROVEMENTS IN


SHEET BREAK RECOVERY

Tuning

Before

GRADE CHANGE TIME

MOISTURE VALUE BEFORE AND AFTER TUNING

2σ=0.07

2000

1500

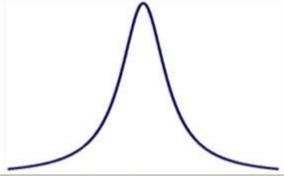
17.50 16.50

16.25

16.00

15.75

15.50

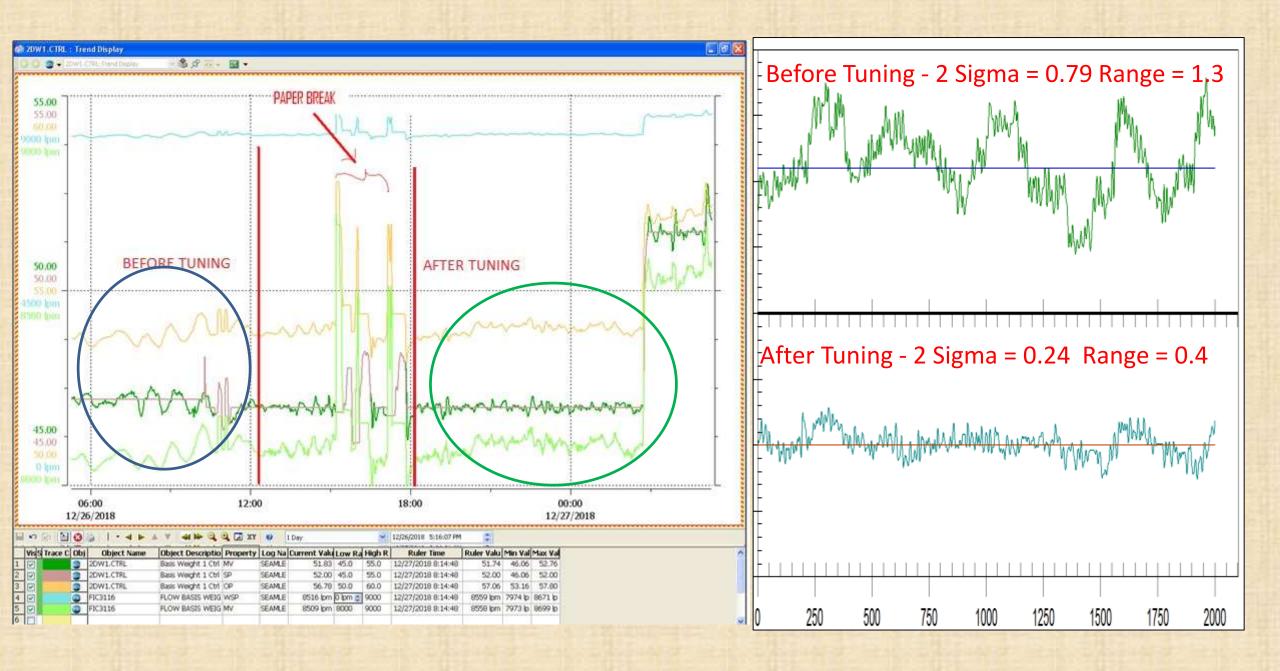

0

500

1000

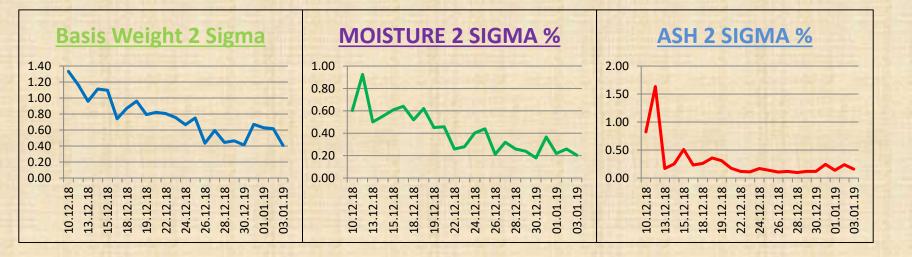
After Tuning

Before Tuning


MANNALAMAN

3000

Range : 0.3


2500

IMPROVEMENTS IN BASIS WEIGHT VARIATION

IMPROVEMENTS NOTICED

Parameter	Before	<u>After</u>	<u>% Improvement</u>
2 Sigma reduction in MDL Basis Weight	0.799	0.24	70%
2 Sigma reduction in MDL Moisture	0.604	0.18	70.2%
2 Sigma reduction in MDL Ash	0.8262	0.10	87.9%
Sheet Break Recovery Time	35 Mins	10 Mins	71%
Paper Break Reduction per month	40	24	40% reduction
Grade Change Time reduction	10 Mins	3 Mins	70% reduction

INTEGRATION OF CUT PACK LINE WITH SHRINK PACKING MACHINE

Preamble:

- Bielamatik#2 and ECH Will Cutter are fully Automated Cut and Pack Lines for Copier A4 reams.
- Production Capacity of Bielomatik#2 is 108 Reams/ Min and of ECH WILL Cutter is 75 Reams/ Min.
- Packed Reams are stacked in Pallets Manually and bundled in pair of 5Reams and fed to Shrink Bundling Machine for packing.


Problem Faced	Modification	Benefits Accrued
 Limitation in throughput due to manual handling. 	•Conveyors were installed adjoining Prestacker and shrink Bundling Machine	10% increase in throughput realized.
 Additional manpower requirement for stacking reams. 	 Carton Packing Prestacker is utilized for bundling reams. PLC Logic Developed for Selection between 	Ream rejects due to manual handling is completely eliminated.
High Ream Rejection and Delayed bundling of reams.	Carton packing and Shrink Bundling to utilize Prestacker unit effectively. •Modifications carried out with nearly Zero cost.	Production Increased by 80000 Reams/Year.

INTEGRATION OF CUTPACK LINES WITH SHRINK PACKING MACHINE

Before Integration

After Integration

CORE END WASTE REDUCTION THROUGH DECURLER AUTOMATION

ECH Will Cutter are fully Automated Cut and Pack Lines for Copier A4 reams with 75 Reams /Minute production capacity.

Problem Faced	Modification	Benefits Accrued
•Unable to run machine till core	•Sheet break during Core end run was	12 mm of unused Core end
end due to frequent sheet breaks at	identified due to poor Decurling.	web utilized.
core end.	•Decurler operation was automated	Reduced Machine shocks
 Increased production cost due to Repulping. 	through PLC logic based on actual reel diameter from Reel start to Core end.	320 KG per day of wasted Paper web processed.
Increased Machine shocks due to recurrent fast stops during every sheet break.	Core End Utilization	Production increased by 40MT/Year
Reduced production and unable to meet production targets.	Before -128mm After-116mm	

Monetary Benefits Realized and Projected

Parameter	Savings in Rupees/Year
Paper Break Reduction Per Month	100 Lakhs
Grade Change Time reduction	30 Lakhs
Moisture Target Shift by 0.5% (Projected)	115 Lakhs
Ash Target Shift by 1% (Projected)	98 Lakhs
Integration of Cut pack Lines with Packing Machine	7.5 Lakhs
Waste Reduction Through Automation	10 Lakhs
Total Savings (Projected + Realized)	360.5 Lakhs
Total Cost Incurred	15 Lakhs
Pay Back	16 Days

"Nothing is Impossible"

THANK YOU

TNPL Management and IPPTA