

Enhancing Efficiency through Electricals, Electronics, Automation and Digital Technology at KPML

Suresh Babu AVP-Production

Naresh Madaan AVP-Engineering

Naveen Wadhwa DGM – E&I

Anshuman Dy. Manager – Envir.

Incorporated in 1985

Annual Group Turnover of ₹ 3,000 Crores Diversified Product Range Packaging Board, Printing & Writing, Newsprint

Among Top 5
Paper Producers in India

The Largest
Waste-Paper based Mill in India

The Largest
Waste-Paper based Mill in Capacity

Single Site with 36,000 MT p.m. Capacity

MACHINE DETAILS

PM - 1

PACKAGING BOARD - 1

(DUPLEX & FBB)

GSM - 230 - 450

Deckle - 284 - 290 cm

Max Capacity - 8000 MT

PM - 2

PACKAGING BOARD - 2

(DUPLEX)

GSM - 280 - 450

Deckle - 204 - 212 cm

Max Capacity - 5500 MT

PM - 4
WRITING & PRINTING,

COPIER AND VAP

(MAPLITHO & COPIER)

GSM - 54 - 120

Deckle - 438 - 444 cm

Max Capacity - 10000 MT

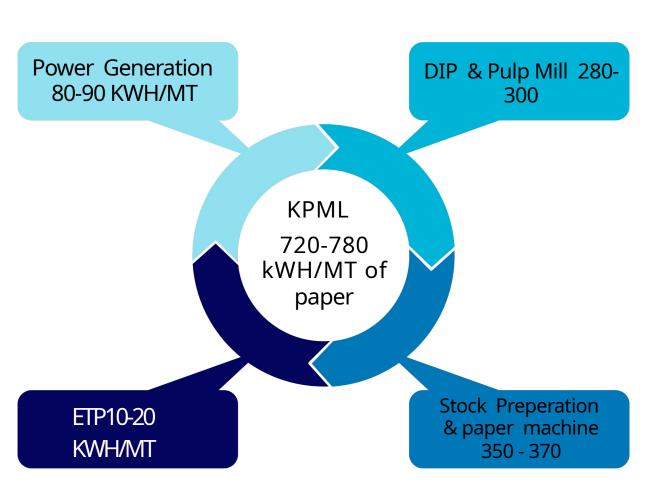
PM - 5

WRITING & PRINTING, AND NEWSPRINT

(W&P & NEWSPRINT)

GSM - 42 - 56

Deckle - 640 - 645 cm

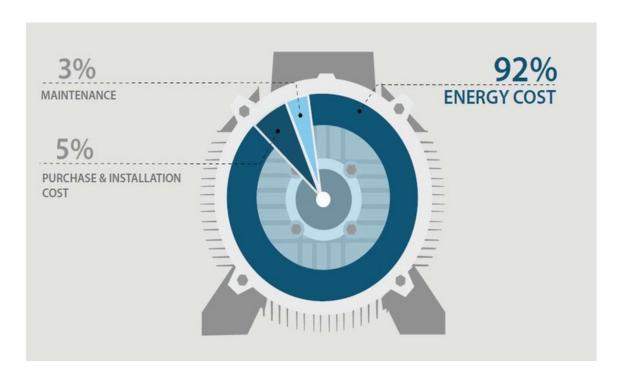

Max Capacity - 13000 MT

Energy and Power consumption overview KPML

Specific Energy consumption year wise TOE/MT

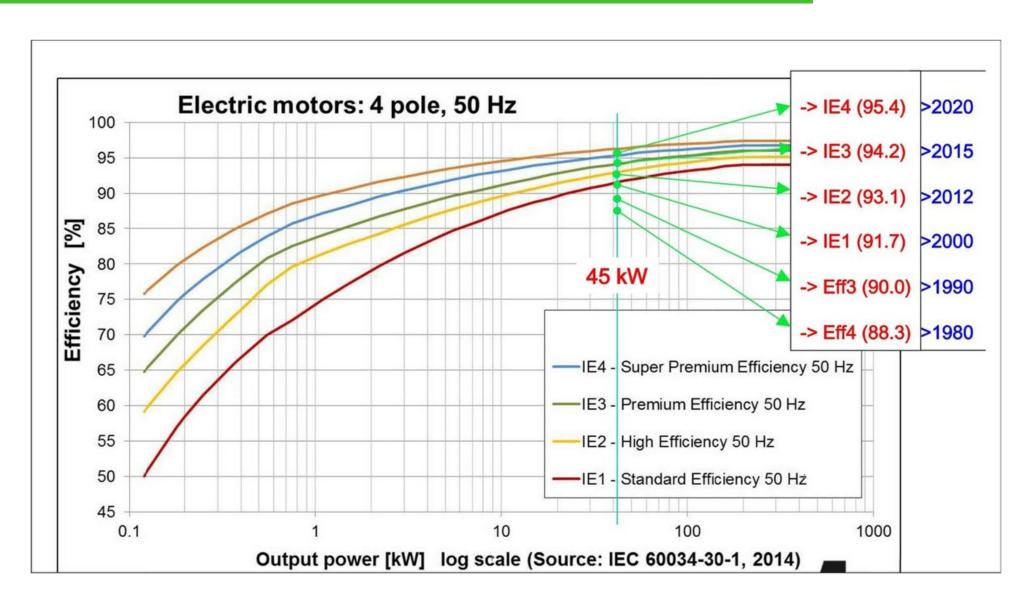
State Energy Conservation Award-2022-2023

(Department of New and Renewable Energy, Government of Punjab)


PEDA Award

KPML Team

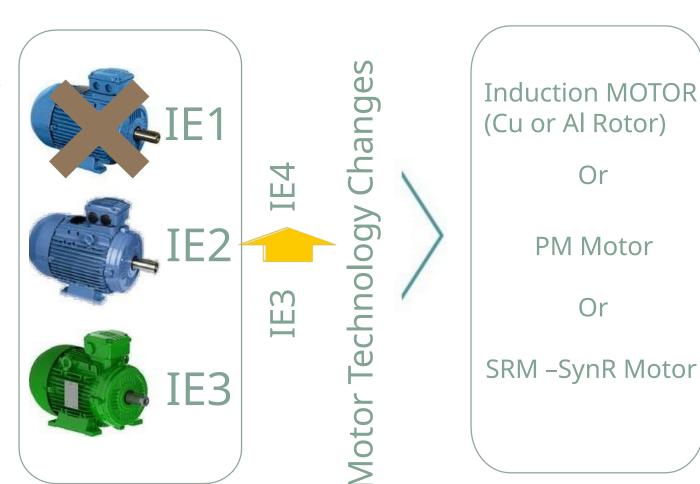
Adoption of Higher Efficiency Motors Approach & its benefits (IE3 & IE4)



Lifecycle Cost Approach

- The cost of buying an electric motor can be deceptive
- In a single year energy cost can be up to 10x the purchase cost.

Performance Curves



EFFICIENCY VALUES COMPARISON

	IE1 – Standard Efficiency			IE2 – High Efficiency			IE3 - Premium Efficiency		
kW	2-pole	4-pole	6-pole	2-pole	4-pole	6-pole	2-pole	4-pole	6-pole
0.75	72.1	72.1	70.0	77.4	79.6	75.9	80.7	82.5	78.9
1.1	75.0	75.0	72.9	79.6	81.4	78.1	82.7	84.1	81.0
1.5	77.2	77.2	75.2	81.3	82.8	79.8	84.2	85.3	82.5
2.2	79.7	79.7	77.7	83.2	84.3	81.8	85.9	86.7	84.3
3	81.5	81.5	79.7	84.6	85.5	83.3	87.1	87.7	85.6
4	83.1	83.1	81.4	85.8	86.6	84.6	88.1	88.6	86.8
5.5	84.7	84.7	83.1	87.0	87.7	86.0	89.2	89.6	88.0
7.5	86.0	86.0	84.7	88.1	88.7	87.2	90.1	90.4	89.1
11	87.6	87.6	86.4	89.4	89.8	88.7	91.2	91.4	90.3
15	88.7	88.7	87.7	90.3	90.6	89.7	91.9	92.1	91.2
18.5	89.3	89.3	88.6	90.9	91.2	90.4	92.4	92.6	91.7
22	89.9	89.9	89.2	91.3	91.6	90.9	92.7	93.0	92.2
30	90.7	90.7	90.2	92.0	92.3	91.7	93.3	93.6	92.9
37	91.2	91.2	90.8	92.5	92.7	92.2	93.7	93.9	93.3
45	91.7	91.7	91.4	92.9	93.1	92.7	94.0	94.2	93.7
55	92.1	92.1	91.9	93.2	93.5	93.1	94.3	94.6	94.1
75	92.7	92.7	92.6	93.8	94.0	93.7	94.7	95.0	94.6
90	93.0	93.0	92.9	94.1	94.2	94.0	95.0	95.2	94.9
110	93.3	93.3	93.3	94.3	94.5	94.3	95.2	95.4	95.1
132	93.5	93.5	93.5	94.6	94.7	94.6	95.4	95.6	95.4
160	93.8	93.8	93.8	94.8	94.9	94.8	95.6	95.8	95.6

Latest Developments in Indian Standards

- IS325 is withdrawn & has adopted IS/IEC60034-1
- For all S1 duty motors IS12615:2011 is adopted i.e. IE2, IE3
- IS 12615:2018 is adopted i.e IE2, IE3 & IE4

Or

Or

Approach for replacement

Motor Age

- Identify the age of motors as per nameplate data or logbooks/ERP system
- Target motors which are 10-15 years old

Motor Size

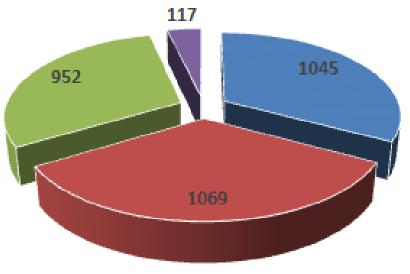
- Preparation of Motor list either rating or frame wise
- Segregation of motor list as small, medium & large motors

Rewinding

- Prime target should be rewound motors with minimum 2 rewinds
- Each rewinding reduces motor eff. in range of 0.5% to 2% as per BEE

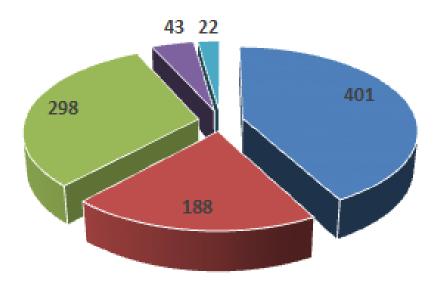
Operating hours

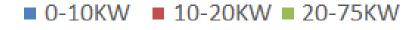
- Motors running for at least 10 hours a day or more than 3300 hours annually
- More the running hours, lower the payback period


Motor loading

- Motors loaded (<65%) are either oversized or running at low efficiencies
- Properly loaded (>75%) run at better efficiencies & give lower payback period

Overview of Motors in KPML


Total No. of Motors Audited: 2114 Nos.



- No. of IE3 Motors
- No. of IE 1 Motors
- Motors to be replaced
- Motors not to be replaced

Capacity wise Overview of the Motors

■ 75-160 ■ >160KW

Energy Savings & Payback Period

Symbol	Description Efficiency
E1	of IE1 Motor
E2	Efficiency of IE3 Motor
Н	Annual Working Hours
Т	Electricity Tariff
L	Motor Loading (%)
Р	Price of IE3 motor

Annual Energy Savings(Es) = kW * [(1/E1) - (1/E2)] * H * L in kWh

Annual Cost Savings = Es * T in INR

Payback Period = (Price of Motor / Annual cost Savings) in years

Rating Wise Saving Details (As per Actual Running

HIS)

Rating Wise	Total No's of Motors	Saving in KWH/Annum	COST SAVING IN Rs Lacs(Considering @ Rs 7.0/KWH)	Investment considering Rs2800/KW	ROI in Years
0 to 10 kw	401	246154	17.2	36	2.1
>10-20KW	188	353846	24.8	59	2.4
>20-75KW	298	923077	64.6	295	4.6
>75- 160 kw	43	292308	20.5	144	7.0
>160 kw	22	1046154	73.2	160	2.2
Total	952	2861538	200	693	3.5

Replacement of Root Blower with Screw

Blower

Root Blower

Screw type Blower

Replacement of Root Blower with Screw Blower & Maintain D.O Level with VFD in

Aeration Tank

- Screw Type Blower
 - Advantages:
 - Highly energy-efficient
 - Low noise levels
 - Stable and consistent airflow
 - Versatile for a range of applications
 - Suitable for both high and low-pressure needs
- Efficiency & Power Consumption
 - High efficiency, up to 90%
 - Lower energy consumption
- Costs , Maintenance & Noise
 - Higher Capex cost
 - Less Life cycle cost
 - Less frequent maintenance
 - Lower operational costs over time
 - Quite operation

Cost Saving Calculation Root Blower Vs Screw

S.N.	Product Description	Capacity (M3/Hr)	No	Power consumptio n in KWH/annum (Lacs)	m
1	Root Blower	1500	5	22	154
2	Screw Blower	4500	2	15.42	108
	Saving per Annum 6.57				46
	30				

Replacement of Root Blower with Screw Blower 🔷 & Maintain D.O Level with VFD in Aeration Tank

Conclusion

Screw Type Blowers combined with VFD

Superior energy efficiency

level consistently.

- More stable DO level maintenance
- Earlier couldn't
 maintain DO level,
 with this
 technology we can
 maintain 2PPM DO

Picture Of Online DO Analyser with feedback signal to Drive.

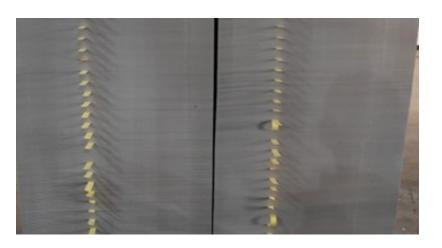
Adopting Online Packing In Converting And Finishing House

Background

- Area: Conversion & Finishing House
- Manpower dependent operations
- Operators assigned for bundling, labelling etc.
- Delays, congestion on floor due to manual involvement

Initiatives

- Automation of Bundle packing & integration with Ream packing
- Collating bundles based on weight
- Feeding them into an online bundling machine
- Automatic Bundle packing with 90 micron thick shrink film
- Trial made for packing with 70 micron thick shrink film also.


Adopting Online Packing In Converting And Finishing House

Infeed Conveyors of Ream

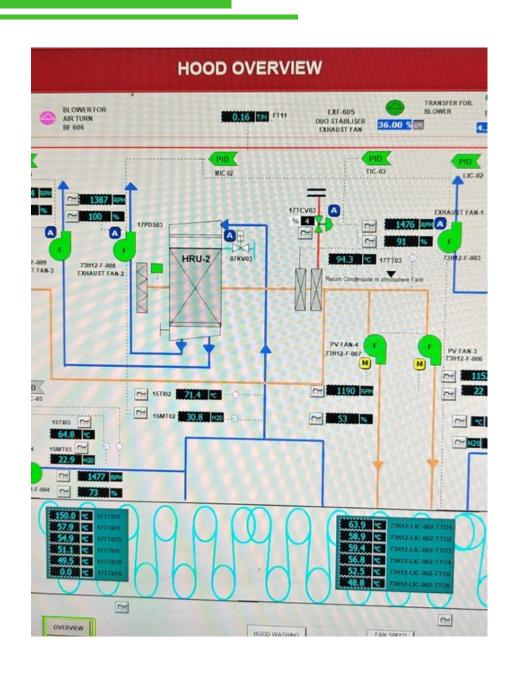
Ream Feeding through Auto

Reams with Auto tabs

Ream Shrink Packing

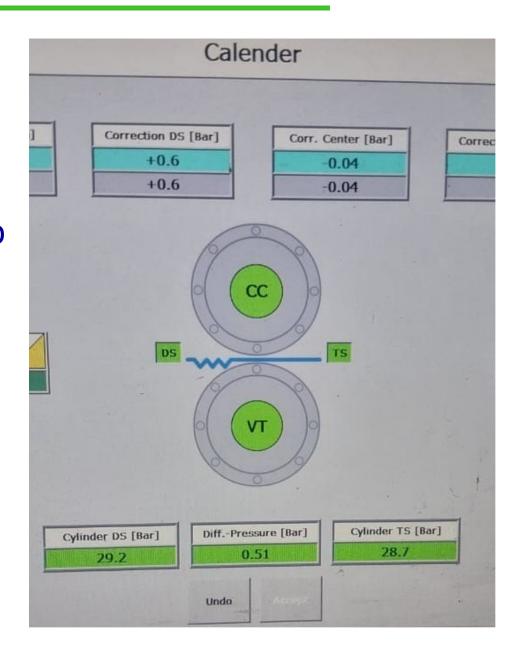
Adopting Online Packing In Converting And Finishing House

HDPE Bundle packing


Bundle Shrink Wrapping
Station

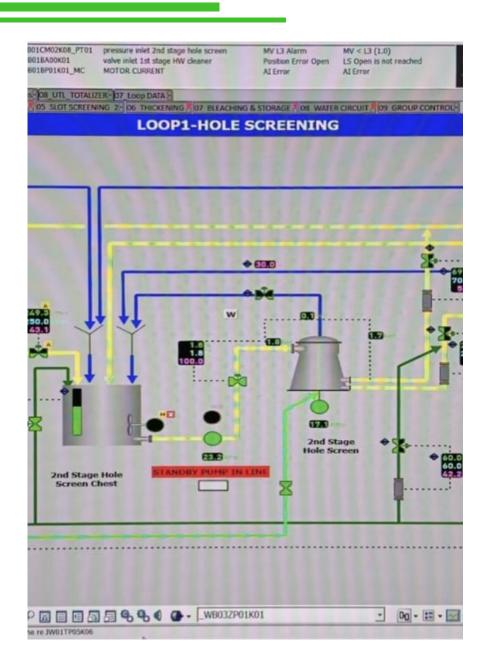
PV Hood Automation and Use of Waste

Heat


- Salient features
- Specially designed hood by Brunschweller, Spain
- Utilization of heat generated by Turbo Blower
- DCS controlled.

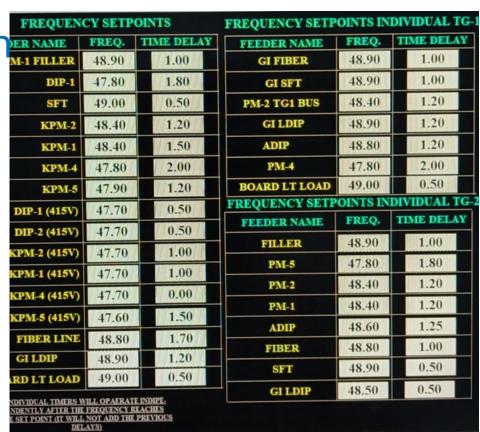
Achieved saving of 0.2ton/ton of paper Steam

Calendar Automation


- Salient features
 - Upgradation of Calendar control from manual to electronic nip control
 - Calendar loading time reduced from
 2.5minutes to 30 sec after each break.
 - Reduced rejections by
 0.3% after each break.

Under Top Layer Upgradation &

Automation


- Salient features
- Under Top layer Pulp
 Production Capacity
 increased from 60 TPD to 90
 TPD.
- Plant yield increased by 0.3%.
- Power Consumption reduced by 15 KWH/ Mt.
- Plant Fiber loss Less then
 3.0 %.
- Fully DCS controlled VOITH plant.

Load Management System

Salient Features

- Load shedding based on source failure
- Frequency base load shedding
- Grid MDI control option
- Grid overcurrent load shedding
- One of TG is controlling the Grid PF to 0.995 through LMS system

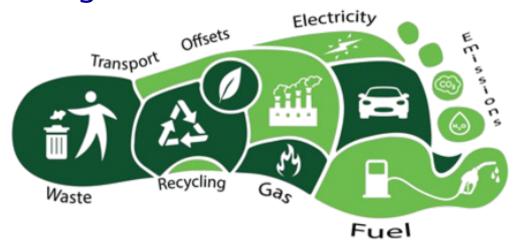
Installation of VFD at Various Plant

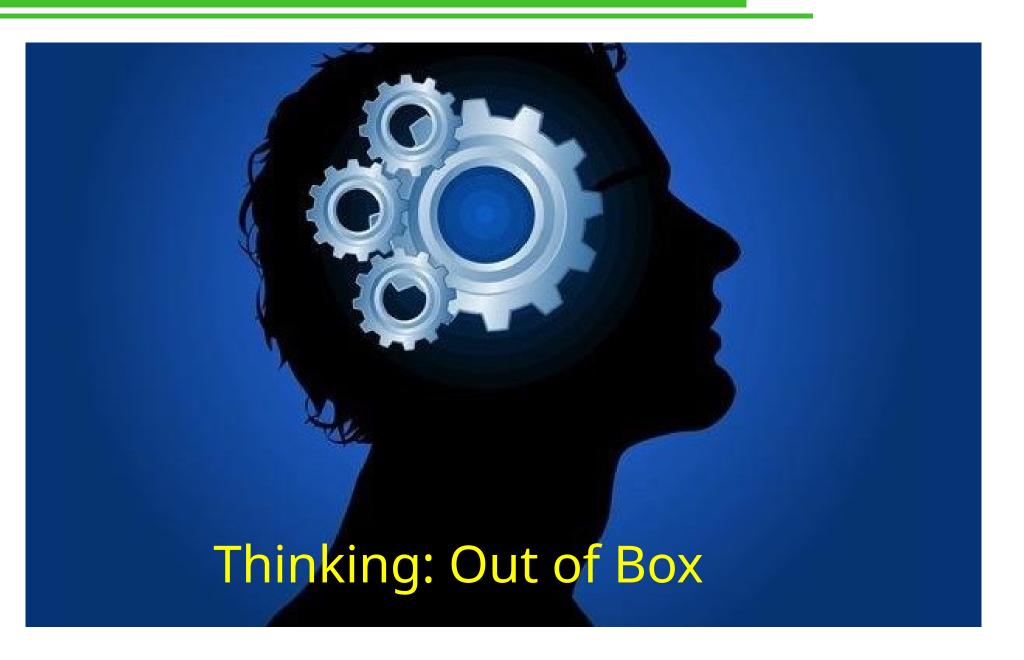
Areas

Project Description	Savin gs (kW)	Monetary Savings (Lacs)	Investme nt (Lacs)
Optimisation of differential Pressure across Air Dryer in ZHC 630+ HT Compressor	63.0	31.75	7.0
Installation of Turbo Blowers and replacement of Liquid Ring Vacuum Pumps in PM1	176.0	88.70	278.1
Installation of Turbo Blowers and replacement of Liquid Ring Vacuum Pumps in PM4	170.0	85.68	643.6
Installation of VFD to Sec. screen Feed Pump at PM4	30	15.12	5.0
Installation of VFD to NP-01 Floatation Cell Feed Pump @7200 hrs & F	70 Rs. 7.0	35.28 / kWH cost.	7.5

Conclusion

KPML is dedicated to continuously upgrading technology across it operations and focusing on sustainable practices.


To ensure environmental compliance and maintain a clean eco - system. We have adopted efficient blower technology for our aeration basin and achieved Energy saving of 46 lac INR/Annum.


We have saved around INR 256.53 lacs due to other Energy conservation Initiatives.

KPML is working towards the sustainable future

Conclusion

THANK YOU

In Khanna, Nothing is a waste/reject,

KHANNA PAPER MILLS LTD.

Corporate Office B-26, Infocity-1, Sector-34, Gurugram - 122001, Haryana, India

Manufacturing Facility NH-3, Bypass, Amritsar - 143001, Punjab, India