

SESHASAYEE PAPER AND BOARDS LTD, ERODE

Fine Papers - LasTing Impressions

AUTOMATION AND ELECTRONIC SENSORS IN SPB PULP MILL

Presented by : S.Santhosh kumar JM(CS) & S.Sivakumar AO (Pulp-operation)

SPB'S COMMITMENT

AUTOMATION PROGRESS IN SPB

CASE STUDIES

1.BOOSTING GAMMA DETECTION EFFICIENCY WITH SCINTILLATION COUNTERS

BACKGROUND:

In Pulp mills, we use a Gamma source level switch for monitoring chip filling. We use CO-60, which quickly reduces the radiation life cycle.

Before: A Geiger Muller detector, it is inefficient at detecting low intensity gamma rays.

After : Scintillation detector very good energy resolution, and efficient at detecting low intensity gamma rays.

scintillation detector

EFFICIENCY WITH SCINTILLATION COUNTERS

BENEFITS:

- Better detection of low-intensity gamma rays.
- Avoid high costs of purchasing and disposing of new gamma sources. Now we saved ₹45 lakh which is one time investment
- Prolongs the usable life of existing gamma sources.
- Ensures precise level measurements, maintaining process efficiency and safety.

scintillation detector

2.e-SERVER IMPLEMENTATION

e-SERVER

A sophisticated DCS ensures precise process control, complemented by e-Server for real-time plant status, enhancing operational efficiency and transparency.

e-Server main page

IMPLEMENTATION STRATEGY

Image : Network Configuration

Network Configuration:

- Assign a unique IP address to the e-Server within the DCS network.
- Configure the DCS data and securely push real-time data to the e-Server using the assigned IP address.
- The e-Server assigned IP configured with mill LAN network.
- Use network segmentation with firewall rules to isolate and protect the e-Server's communication within the mill LAN.

TESTING & BENEFITS

Testing And Validation

 Ensure accurate data from DCS Validate consistency with real-time comparisons

BENEFITS:

- Improved transparency
- Empowered workforce
- Enhancing operational efficiency
- Real-time plant status can view by higher officials and Management

சு நாக பசுமை நிறுவன	min PLANT	OVERVIEW	Green Co	mpany
RDH PULPING PLANT WKSHING RATE 18.19 Thr SCREENING 18.38 Thr TRPEED 383.78 M3H DLEALHING RATE 15.65 Thr TO MACHINE 13.13 Thr 58.31 0.32 27.65 DISCHARGE UNBLEACHED BLEACHED BLEACHED TOWER TOWER	EVAPORATOR PLANT VAL FLOW 240.69 m3/hr VAL FLOW 240.69 m3/hr VAL FLOW 100.00 m3/hr PRODELWY 100.00 m3/hr PRODELWY 1445.67 Kg/m3 STM FLOW 30.14 MThr STM FLOW 30.14 MThr STM PRESSURE 2.70 Kg/m2 STM FLOW 650.08 mmHg H25 GAS MONITOR NAN PPM 97.83 % 93.33 % 391.33 m3 MS m3 NET WIRBL MARMER MAL MAL	RECOVERY BOILER BLCK LKO FLOW 58.86 TPH BLCK LKO FLOW 11.42 G/CC REFRACTROMETER 66.37 % Solids BLCK LKO FLOW 39.07 % MAM STIM TEMP 452.30 Deg C MAM STIM TEMP 41.9 % STIM TEAL (2 mg/Nm3 TIM TEAL (2 mg/Nm3 FURHACE PRESS 7.45 MMWC ID FAULT Q 708 RPM ID FAULT Q 714 RPM	ME1 DEENONG CHESTICONSISTENCY WOOD FLOW BACASE FLOW BACASE FLOW STOCKFLOW BEENONG CHESTICONSISTENCY WOOD FLOW BAGASE FLOW STOCKFLOW	3.73 % 3.54 % 68.93 m3H 13.33 m3H 35.27 m3H 2235.81 LPM 3.24 % 3.17 % 3.22 m3H 0.30 m3H 0.40 m3H 3139.24 LPM
LIME KILN	WLCD			5/4 2024 722
LIME WEIGH FEEDER 4.51 1994 LK FURNACE TEMP 851.53 Deg C 02 0.71 %	WLCD FEED FLOW 63.46 m3/hr WLCD PRODUCT FLOW 73.59 m3/hr	BLACKLOR PUMP 1 & 2 🤵 🧕	CLO2	RECOVERY BOILE
LK DRME 🔘 1.15 RPM		<u>16MW</u>	FBL & BL	WLCD
SO2 19.92 % NO2 72.11 % SPM 6.42 mg/Nm3 BIO GAS FLOW 210.09 Nm3/hr FUEL OIL FLOW 1029.57 TPH	93.84 % 0.31 % -0.07 % 2042.74 29.20 m3 23.71 m3 WILTEARS WL TAMES WL TAMES VIL TAMES VIL TAMES	чалится гожек 11.99 MW челимтся гожек 50.05 Hz тиквике к. Рис 63.99 Kg/Cm2 тиквике и гож 109.59 TPH	MF1 & MG 16N	LIME KILN

e-Server plant overview

3.FIRST IN FIRST OUT LOGIC

BACKGROUND:

FIFO tag helps in tracking and identifying the sequence of interlock activations and failures, allowing for quicker identification of the root cause when a failure occurs and it will be automatically resets when the plant was started.

Problem:

- Difficulty in diagnosing failures due to complex interlocks
- Significant downtime and production losses when issues arise

• Challenges in pinpointing specific interlock or parameter failures

STEP-BY-STEP IMPLEMENTATION

System Analysis:

 Identify the critical equipments and Introduce **FIFO** tagging

Failure Detection and Analysis:

• Highlight failure points using FIFO sequence

BENEFITS:

- Rapid identification of failures
- Reduced troubleshooting time and minimized downtime
- Improved safety through accurate failure detection
- Efficient data management for maintenance decisions

First In First Out block

4.DCS CARD FAILURE IDENTIFICATION LOGIC

BACKGROUND:

In a DCS, occasional I/O card failures occur, and pinpointing the exact card responsible for the failure can be time-consuming.

Different I/O cards:

- DI/DO Cards: 32 I/O points each
- AI/AO Cards: 16 I/O points each
- Card Slots: one file rack contain
 15 card slot totally we have 15 files.

DCS CARD

DCS CARD FAILURE IDENTIFICATION DISPLAY

📻 🔯 🚫

島底 🧰

DCS CARD FAILURE IDENTIFICATION LOGIC

Logic Implementation:

- Continuous status monitoring of I/O cards
- Retrieve real-time data (operational status, error codes)

Solution:

• Developed a visual logic system and it helps to enables quick identification of failed I/O cards.

BENEFITS:

- Quick identification of card failures
- Reduced downtime and increased efficiency
- Improved process reliability and safety

DCS CARD

5.LAST EQUIPMENT RUNNING STATUS

BACKGROUND :

- During equipment changeover, planned shutdowns can lead to extended downtime.
- Lack of awareness about equipment status during shift changes can cause incorrect equipment operation.

Step-by-Step Implementation

- System Analysis : Identify critical equipment .
 - LR Tag Setup : Implement LR tags, integrate with control systems, and log data continuously.
- User Interface and Alerts : Created a user-friendly interface and implemented alert systems.

LAST RUN STATUS

IMPLEMENTATION AND BENEFITS

Solution - Implemented the LR (Last Run) Tag:

- LR tag records and indicates the last run status of each and every important equipment.
- Helps the process department and shift personnel to know exactly which equipment needs to be started.
- Improves productivity and reduces the likelihood of errors.

BENEFITS:

- Accurate Status Tracking
- Improved Communication
- Reduced Downtime
- Enhanced Safety and Increased Production Efficiency

Last Run Tag

6.ADVANCED CHEMICAL OPTIMIZATION IN PULP BLEACHING

BACKGROUND:

- During the bleaching stage, we utilize ClO₂, H₂SO₄, H₂O₂, and NaOH with specific quantities of these chemicals.
- Despite washing and significant chemical wastage remains a challenge.
- Inconsistent control over kappa number and brightness.
- **Objective** : Optimize chemical usage, maintain quality
- Stages : D0, EOP, D1

•

Solution

We have implemented a new technology to optimize our current chemical usage and achieve our target brightness with more effectively.

We used MACS (Multivariable Advanced Control System) software with inline instrument sensors (BLT and BT sensors). It is a predictive control software.

ADVANCED CHEMICAL OPTIMIZATION

Sensor Placement:

- BLT Sensors
- : D0 and D1 tower inlets (Kappa, Brightness)

BT Sensor

- D1 tower outlet : (Brightness)
- Data Integration : Real-time Data To Software and DCS for Control Adjustments.

BENEFITS:

- No manual calculations to set the targets.
- Reduced the excess bleach chemical, and saving 1.5 - 2 kg/ton of bleached pulp.
- Consistent brightness control.
- Optimized chemical consumption, improved sustainability.

Sensor places

SUMMARIES

SL. NO	IMPLEMENTATION IDEAS	BENIFITS OF SPB	APPLICABLE TO
1.	GAMMA DETECTOR	We saved up to ₹45lakh which is one time investment.	Radiation application areas
2.	e-SERVER	Transparency with Real-time plant status access.	DCS application areas
3.	FIFO LOGIC	Reduced troubleshooting time through accurate failure detection	All Automation areas
4.	DCS CARD FAILURE LOGIC	Reduced the down time by Quick identification of card failures.	DCS application areas.
5.	LAST RUN STATUS	Improved the Communication and Enhanced safety.	Can be applied all unit operations.
6.	CHEMICAL OPTIMIZATION	Cost reduction ₹ 550 Lakhs per annum aprox. and Path Forward Towards IOT.	Can be applied all unit operations

OUR EFFORTS & JOURNEY CONTINUES IN THE PURSUIT OF EXCELLENCE TOWARDS SUSTAINABILITY

By implementing these ideas and new electronics in our industry,

we have Enhanced support and achieved our targets.

Proud To Be Responsible Paper Makers. THANK YOU