IPPTA – 1st ZONAL SEMINAR - 2024 ENHANCING EFFICIENCY THROUGH ELECTRICALS, ELECTRONICS, AUTOMATION AND DIGITAL TECHNOLOGY IN PULP & PAPER MILLS

Case Study Title:

PULP VISCOSITY VARIATION REDUCTION THROUGH AI/ML MODEL

Unit Name: Harihar Polyfibers, Grasim Industries Ltd

Mr. Manohar Kumar R. Vice President (Technical)

Mr. Panchakshari SG Manager (Tech. Cell)

Mr. Pavan R Kulkarni Dy Manager (Pulp plant)

Pulping Process

Case Study Introduction

- In the current competitive business scenario, meeting customer growing expectations and demand with old technology and aged equipment is a challenge.
- The variation in pulp quality will affect fiber quality lead to customer complaints and losing customers.
- Variation in pulp viscosity affects fibre quality in terms of ball fall variation, filtration delay and variation in machine splinter.
- RG pulp viscosity CV% variation was 4.92 % (Baseline FY20) with range of 3.0 6.0 % variation on day-to-day variation.

Approach / Root Cause Analysis

втортиза	Viscosity(n-1) Viscosity(n-2)- Hype Viscosity(n-3)- Viscosity(n-3)- Wiscosity(n-2)- Hype Viscosity(n-2)- Eop Viscosity(n-2)- Eop Viscosity(n-1)- Eop Viscosity(n-1)- Eop Viscosity(n-3)- Eop Viscosity(n-3)- Eop Viscosity(n-1)- Hype-1 Solution flow(n-2)- Hype-1 Solution flow(n-1)- Hype-1 Solution flow(n-1)- Bolution Concentration(n-1)-											
	Hypo Solution Concentration-	0.0	6.1-	6.2-	6,3-	0.4-	9°2'	9.6	0.7-	8.8-	-6-0	1.0

- Harihar unit doesn't have state of the art online measurement and control system.
- Process involves > 80 operating variables, it is very difficult to control on manual base on raw material quality.
- 25 Parameters analysed and narrowed down to 04 No parameters through MINITAB which are contribution more to viscosity variation.
- Inhouse development of algorithm for Hypo viscosity control has started in Jul-2021.

Various algorithm models deployed using MINITAB and tested offline to ascertain effectiveness in comparison to manual control.

Statistical Algorithm Model – 1 (Simple Regression)

Hypo Dosage = 2.19 * (Target Hypo Brightness – Target Eop Brightness) + Avg. (Last 3 hr Hypo Dosage) * Ln (Eop Viscosity (n-2) / Hypo Viscosity Target)

Statistical Algorithm Model – 2 (10-point Regression)

Hypo Dosage = A * (Target Hypo Brightness – Actual Eop Brightness) + B * Ln (Eop Viscosity (n-2) / Target Hypo Viscosity)

Statistical Algorithm Model – 3 (6-point Regression)

Hypo Dosage = A * 5 + (B * Actual Eop viscosity) - Target Hypo Viscosity – (sum of deviation from last 3 hr hypo dosage / 3)

Statistical Algorithm Model – 4 (Multivariate)

Hypo Dosage = (A + (B * Actual Eop viscosity) +C * Ln (Actual Eop Viscosity / Actual Hypo Viscosity) + D * Exp (Hypo pH) + E * Ln (Actual Eop Viscosity / Target Hypo Viscosity)) / (Hypo Concentration * Pulp Rate)

Based on various model deployment experience team developed 5th model which works on last 10 hours rolling data of pre and post hypo stage viscosity, brightness and dosage.

Statistical Algorithm Model – 5C

Hypo Dosage = If (Hypo dosage < Min Hypo dosage, last hypo dosage) + If (Target Hypo Brightness – Eop Brightness (n-1) > 10, Hypo dosage is zero)

Statistical Algorithm Model – 5D

Hypo Dosage = If (Hypo dosage < Min Hypo dosage, last hypo dosage) + If (Target Hypo Brightness – Eop Brightness (n-1) > 10, Hypo dosage is min 10)

Improvement observed from model to model.

- Models were developed using excel sheet and needs timely input, any human error is misleading the model.
- AI/ML model collaborative project under taken with developer to develop dynamic algorithm to control hypo pulp viscosity to minimize the final loose pulp viscosity variation.

AI/ML Algorithm Model

Hypo Dosage = -24.23 – 0.208 * Eop viscosity (n-2) + 0.263 * Eop Viscosity (n-1) + 0.802 * Hypo Addition (n-1) + 0.1 * ((Hypo Viscosity (n-2) – Hypo viscosity Target) + (Hypo Viscosity (n-1) – Hypo viscosity Target))

- Based on the degree of importance last two hours pre & post hypo stage viscosity and final pulp viscosity targe.
- Model output observed for one month in offline and after ascertaining reliable suggested hypo dosage deployed for plant scale.

Impact / Benefit for the Pulp Plant

Impact / Benefit for the Customer (Fibre Plant)

✓ Reduced Ball Fall variation.

✓ Reduction in Machine splinter.

✓ Reduction in Filtration delay.

✓ Improved sustainable plant operations.

Sustainability & Replicability

With encouraging results, continuous improvement and eliminating the human interruption, developed software by integrating with SAP data and PI historian.

Results achieved with inhouse statistical algorithm generated using MINITAB and with collaborative R&D project with PFIC & AI/ML developer (Invested Rs. 24.0 lacs)

	Hy	po Viscosity				
REAL-TIME VALUES	1	CHARTS	(H	HISTORY		
Target Loose Pulp Viscosit Target Hypo Viscosity (n	y (ml/g) nl/g)	455	Last Up SUBMIT	date: 19-07-2024 11:45		
Eop Viscosity (mi/g)	665		Soft Sensor			
Eop Brightness (%ISO)	82.5	Predicted Hype V	Viscosity (milio)	503.2		
Hypo Viscosity (ml/g) (Lab)	472	Health Index of	Pred. Model			
Hypo Tower Temperature (°C)	49.69					
VF-6 Stock Flow (m ³ /hr)	303.61	Recommen	ndation Hypo Flowr	ate(L/min)		
VF-6 Inlet Consistency (%)	2.99		Recommend	Actual		
VF-3 Stock Flow (m ³ /hr)	284.14	Primary	50	51		
Hypo Concentration (gpl)	29.4	Secondary.		0.0		

Presently every 15 min data get refreshed automatically and suggest the hypo dosage addition.

Harihar Loose Pulp Viscosity Tool Hypo Viscosity								
REAL-TIME VALUES			CHARTS		HISTORY			
			Download Excel File		Last Upo	late: 2024-07-18 06:20 PM		
DateTime	Target Hype Viscosity	Hype Viscosity	Predicted Hypo Viscosity	Model Health Score	Dependency	Recommended Hypo-1 Solu		
2024-07-17 20:20:00	Set	465	454,9	92.3	AL	49.7		
2024-07-17 29:15:09	96	466	456,7	12	AT	48.9		
2824-07-17 20/10:00	585	400	419.0	91.7	40	0.1		
034-07-17 20:05:00	591	445	462.6	91.5	. A1	38.9		
0024-07-17 20:00:00	545	466	464.4	6.19	AI	35.6		
2924-07-17 19:55:00	598	400	403.5	30.2	. 45	35.4		
2824-07-17 19:58:00	585	474	466.5	91.9	AL	36.3		
2024-07-17 18:45:00	365	478	468.1	10.4	AZ.	38.3		
2024-07-17 10:40:00	541	476	469.4	98.5	40	21.3		
2024-07-37 19:25:00	585	474	471.5	99.2	. 41	42		
1024-07-17 19:30:00	545	476	473.9	17.4	AT	39.3		

History report can be generated in Excel, Doc and pdf format.

Key Learnings

- In Hypo stage, biggest variable driving the delta in viscosity is due time lag effect.
- Combining time series modeling with AI modeling with solving partial dependence equations also led us to the insight of viscosity variation.
- RG pulp viscosity comes after 3-4 hours of lag and is an impact of all previous additions hence changing hypo flow rate from latest RG pulp viscosity will lead to process imbalance.
- Viscosity in post hypo stage is seen to follow a curve of natural decay with inlet viscosity in hypo stage the most important driver.
- AI/ML Model applicability in process control helps to improve product / process quality and cost optimization.

Results

Finance						
CAPEX deployed	Rs. 24.0 lacs (0.29 Mn USD)					
Customer						
Reduction in Customer Complaints	14 No to 3 No per year w.r.t viscosity					
Value delivered for customer	Yes, with less variation in pulp viscosity					

Way Forward

- Hourly auto updation of recommended Hypo dosage in DCS via AIML model.
- Replication of AIML model to Do and D1 stage to control brightness of pulp.

Thank You