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Abstract:
Conservation and sustainable use of resources – fibre, water, and energy is a major focus 
of many industries and especially the pulp and paper industry. An important parameter and 
also very useful for ensuring sustainable resource management is the measurement of filtrate 
turbidity at various stages of papermaking. Filtrate turbidity stands as a vital parameter in 
ensuring operational excellence, and final product quality. This paper explores an artificial 
intelligence (AI) enabled technique where filtrate turbidity measurement is used as a surrogate 
for determining the charge demand and thereby optimising chemical additives usage. For 
eliminating human error in the determination of filtrate turbidity, a fully automated filtrate 
turbidity tester (FTT) that complements the integration of the AI unit is furnished in brief. 
AI enables multi modal analysis in real time and the capacity to handle a large amount of 
data. Details and results of a case study exploring the correlation of filtrate turbidity with 
charge demand and thereafter the use cases in retention and drainage control, and strength 
properties optimisation is also discussed. From our study using machine learning (ML) 
techniques, we could find a good correlation between filtrate turbidity and charge demand 
in papermaking systems where the anionic trash was high, mainly deinked pulp, mechanical 
pulp, and virgin pulp with chemical carry over. This correlation was used to train our AI/ML 
model to predict coagulant dosage from filtrate turbidity.
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Introduction
AI in pulp and paper will drive rapid 
transformation of the industry enabling long 
term sustainability and profitability. Data to 
enable models will be key to AI’s impact on 
the industry. Real-time process data using 
advanced sensing technologies will play 
key role toward this. Measuring the filtrate 
turbidity of process water holds significant 
importance in order to ensure the quality of 
water in the papermaking process. It serves 
as a crucial parameter for assessing the 
clarity and purity of process water, which is 
integral to various stages of papermaking. 
Within the complex milieu of pulp and paper 
manufacturing, where water is extensively 
utilised for tasks ranging from pulp dilution 
to paper formation, maintaining optimal 
turbidity levels is paramount. 

Within the realm of process optimization, 
filtrate turbidity testing plays a pivotal 
role in evaluating the papermaking system 
performance with respect to chemical additive 
usage. By quantifying filtrate turbidity levels, 
operators can assess the effectiveness of the 
additives used for retention and drainage, 

and for strength improvement. These filtrate 
turbidity measurements enable fine-tuning 
of chemical additives based on process 
parameters to achieve optimal efficiency, and 
ensure consistent product quality.

Challenges of Manual Filtrate 
Turbidity Testing in the Pulp and 
Paper Industry:
In the pulp and paper industry, filtrate 
turbidity testing is critical in maintaining 
process efficiency and product quality. 
However, traditional manual methods 
present significant challenges, which are as 
follows:

1. Delayed Response and Operational 
Inefficiency: Traditional manual 
sampling and laboratory analysis 
introduce significant delays, preventing 
real-time adjustments to turbidity 
fluctuations. This results in extended 
periods of suboptimal process 
performance or off-spec product output, 
reducing overall operational efficiency.

2. Intermittent Data and Process 
Variability: Without continuous 
monitoring, turbidity data is collected 
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at discrete intervals, potentially missing transient events 
and short-term fluctuations. Continuous monitoring systems 
are necessary to capture these fluctuations and provide a 
comprehensive understanding of process performance [3].

3. Inconsistency in data: Filter paper even from the same 
manufacturer that is used for filtration has variability in pore 
diameter which leads to poor repeatability. A lack of universally 
accepted standard procedures add to the inconsistencies in data 
and prevent data comparison. Variability in sample agitation, 
filtration speed, and handling techniques leads to inconsistent 
filtrate turbidity measurements [4].

4. Increased Operational Costs: Manual filtrate turbidity testing 
necessitates dedicated personnel, specialised equipment, and 
laboratory resources, driving up operational costs. Delays 
and inaccuracies in testing also contribute to increased waste, 
rework, and associated expenses.

5. Suboptimal Chemical Utilisation: Accurate, real-time filtrate 
turbidity data is essential for optimising the dosages of process 
chemicals such as coagulants and flocculants. Without it, 
chemical usage may be inefficient, leading to higher costs, 
process upset, and potential environmental impacts.

The lack of continuous, real-time data hinders detailed process 
analyses, innovation, and the ability to test and refine new process 
configurations, limiting technological advancement and process 
improvement initiatives. Towards addressing these concerns, we 
have developed a fully automated AI-ML enabled filtrate turbidity 
tester (FTT).

Artificial Intelligence for Process Optimization:
The pulp and paper industry continually pursues innovative 
solutions to boost process efficiency and product quality. AI plays 
a pivotal role in this quest, offering insights that range from simple 
energy conservation practices, such as turning off idle equipment, 
to complex tasks like detecting leaks, inefficiencies, and potential 
breakdowns. AI’s prowess lies in its capacity to gather, analyse, 
and predict outcomes from vast datasets, identifying bottlenecks 
and proactively addressing them [5]. Real-time data collection and 
analysis, made possible by online sensors, allow for precise control 
over variables, essential for competitiveness in this industry.

The rise of Industry 4.0 has ushered in a new era of AI integration, 
enabling real-time adjustments based on data insights, thereby 
enhancing efficiency and meeting industry demands. For instance, 
AI facilitates predictive maintenance, minimising downtime and 
optimising inventory management through accurate forecasting, 
preventing both overstocking and shortages. ML models further 
refine processes by leveraging extensive datasets, boosting 
operational efficiency and energy optimization.

This integration of AI and ML technologies into pulp and paper 
equipment not only optimises resource utilisation but also addresses 
a myriad of operational challenges. The notable improvements 
underscore the potential for wider industry adoption of AI-driven 
turbidity testing equipment, promising enhanced efficiency and 
sustainability.

The AI-integrated, Automated FTT:
Many instruments used in the paper industry rely on the sample 
filtrate (supernatant) since measuring the sample from head-box or 
white-water is difficult due to presence of particles. The particles 
might interfere directly with the measurement or at times make 
the post cleaning of the equipment for the next measurement 
cycle difficult. Usually the filtrate is obtained through a manual 
filtration, before carrying out say a charge demand measurement. 

The manual filtration can be a gravitational method that uses filter 
papers readily available to the industry. Such filtration methods are 
subjective to the operator, the type and make of filter paper used, 
involve labour intensive procedures, often non comparable across 
different machines, lack standard methods, and are non-practical for 
continuous monitoring. 

The need for an automated filtration unit, that solves many of 
the problems mentioned above, is evident. Here we discuss the 
design and development of a real time filtrate analysis unit that can 
deliver quick batches of filtrate from input samples ranging from 
consistencies around 0.05% to 5% [3]. The idea was to create a 
filtrate generating unit that can be plugged into any stage of the 
paper making process and continuously obtain consistent levels of 
filtration. We integrated a turbidity/TSS sensor to the filtrate unit to 
receive continuous turbidity data that is relayed to the AI/ML-based 
engine. As a matter of fact, sensors measuring different parameters 
can be plugged into the flow cell to cater to the individual needs of 
the industry. 

The FTT unit (Figure 1) has an automated sampling system 
controlled by various values and a filtration unit containing a metal 
filter mesh. This metal filter mesh is the key component in ensuring 
the repeatability of the filtrate turbidity measurement. The metal 
mesh, usually made of SS304, has uniform pore sizes and is reusable. 
The pore size of the filter mesh can be selected according to the 
application and once optimised by comparing with a standard filter 
paper like a Whatman filter paper, the unit will provide consistent 
results thereafter without the need for repeated calibration. There is 
a wash cycle after each measurement cycle to ensure that the pores 
in the mesh are kept clog-free. The entire system is designed to 
withstand mild acid wash in case such a requirement arises. 

The sample that needs to be filtered is delivered to the filtration 
unit where gravity or vacuum assisted filtration can be carried out. 
The filtrate is then passed into a flow cell that contains a turbidity 
sensor that continuously transmits the relevant values. The whole 
system is automatically controlled using a Programmable Logic 
Controller (PLC) and completes the sample to filtrate cycle in less 
than 10 minutes. Simple schematic of the system is shown in the 
figure (Figure 1) below.
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FTT proves to be a powerful tool since it eliminates many of the 
inconsistencies from manual filtering and their limitations thereof. 
The consistent filtration ensured repeatability and also enabled us to 
find correlations with other relevant parameters of the system. One 
of such case studies is mentioned in the coming sections. 

Case Study:
Filtrate Turbidity and Charge Demand

The initial study was to test our hypothesis regarding the possibility 
of establishing a correlation between the filtrate turbidity and the 
charge demand. 

The FTT unit was deployed at a customer site to test out our 
hypothesis and conduct the correlation studies. More than 100 days 
of data was collected and analysed. 

Experiments and Methods: 
Headbox samples were collected from different paper machines 
(PM) to check for the soluble charge demand (SCD), particulate 
charge demand (PCD), and total charge demand (TCD). The filtrate 
from our FTT unit was collected and a charge detector was used for 
charge measurement. The FTT mesh size selected for the study was 
45μm.

Table 1 shows the correlation values that were obtained using a 
machine learning model that segregated the data grade-wise. We see 
a strong correlation of data in Grade B and C, but poor correlation 
for Grade A. The model selects the best correlation coefficient that 
can be used for creating the correlation. Values in the range of 0-30% 
are discarded, 30-70% is kept as a secondary parameter and values 
more than 70% are used for further analysis.

The equation used for finding the correlation coefficient is as given 
below

Table 2 shows the strong correlation observed for the broke sample. 
Such a high correlation provides us with a strong model to use the 
filtrate turbidity values as a surrogate for charge demand as discussed 
in the previous sections.
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Table 1: The correlation (coefficient) results are given below: 

Grade 
PM - 1 PM - 2 

TCD SCD PCD TCD SCD PCD 

A 15% 4% 13% 22% 23% 7% 

B - 84% - - 15% 83% 

C 26% 72% - - - 79% 
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deeper understanding of the particular system helps in reducing 
the variation bandwidth and keeps the system within the 90% 
set point instead of continuous fluctuation. In the rare event of a 
huge variation, the model flags it as a system failure and needs to 
be addressed separately. Another major advantage is the ability of 
the AI-ML system to cater to multiple parameters before taking the 
control decision, like say pH in certain cases. 

Results of AI-ML driven testing:
1. In Coagulant dosage in cases where anionic trash is present

Coagulant is used for charge neutralisation to maximise the overall 
retention of the fibre, fines, and filler in a papermaking system [6]. 
As we have established a model that can use the filtrate turbidity 
value in place of charge analysis values, it will help in optimising 
the dosage of coagulant and improving the overall performance, 
retention, and productivity of the system in a continuous manner 
without relying on charge analysis data. The FTT could be installed 
typically before the addition of coagulants.

From the filtrate turbidity value and historical chemical dosage 
value, the model classifies filter turbidity values and chemical 
dosages to different clusters. Thereafter the new chemical dosage 
value is predicted depending on the cluster where the values fall. 
Figure 5 shows such a cluster where the filtrate turbidity and 
coagulant dosages are mapped. We used K-means clustering to 
predict the dosages. 

Conclusion:
With the advent of AI in industries, we are seeking solutions to 
many problems that were thought to be difficult to solve. In addition 
to that, AI also enables us to go beyond what is humanly possible, 
track across multiple parameters, and make smart decisions in real 
time. By training the AI model we can incorporate all the variables 
that are interlinked so as to run the process at peak performance. As 
demonstrated in this paper, we could use turbidity measurement as a 
surrogate for a more expensive or complicated charge measurement 
set-up. This was made possible by combining automation of the 
filtrate generation process, running linear regression and finally 
using an AI model to predict the ionic demand. 
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Figure 5: Clustering done by the ML model

2. In WSR optimisation to achieve target wet strength 

In the next case we consider the control of Wet Strength Resin 
(WSR). We have taken the case of papermaking systems that use 
recycled furnish like deinked pulp. Here anionic trash poses a 
challenge that needed to be addressed using the AI-ML model. The 
model considers a two tier approach where first the anionic trash 
is neutralised without compromising on the pH value before WSR 
comes in contact, thereby ensuring that the cationicity of WSR is not 
consumed inefficiently and predicting the optimal dosage of WSR. 
We can use coagulant in lieu of WSR as anionic trash controller 
thereby reducing the WSR demand, which is significant owing to the 
cost of wet-end chemicals (which can even go up to 20% of world 
pulp and paper producers’ total raw material expenditures) [7]. Here 
also we use filtrate turbidity as an indicator to predict charge and 
control the chemical dosage.

The estimated correlation coefficient for the filtrate turbidity values 
to SCD was 74.32%. The data was fed into a ML model and here 
we used support vector regression (SVR) to predict the coagulant 
dosage value. The final dosages fell within the acceptable limit.

Abbreviations: 
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ML:  Machine Learning

FTT:  Filtrate Turbidity Tester
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PLC: Programmable Logic 
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PCD: Particulate Charge 
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DCS: Distributed Control System
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