Energy Efficiency in

Compressed Air & Chilled Water Systems

Presentation by: Mr. M Phani Kumar - Energy Manager

ITC Limited - Paperboards & Specialty Papers Division (Unit – Bhadrachalam)

Slide # - 1

India's largest & Most technologically advanced Integrated Pulp & Paperboard Manufacturing Facility Pioneer in Ozone bleaching, BCTMP Technology in India

Certifications & Compliances

Category	Certification/ Compliance	Description		
	ISO 9001	Quality Management System (QMS)		
Manufacturing & Safety	ISO 14001	Environmental Management		
	OHSAS 18001	Occupational Health and Safety Management		
	ISO 50001	Energy Management		
	BRC Global Standard	Hygiene & quality for Packaging & Packaging Materials		
Regulatory	SMETA 4 Pillar	Member of SEDEX (Supplier Ethical Data Exchange)		
	REACH	Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) - a European Union regulation		
	RoHS	Restriction of Use of Hazardous Substances like lead, cadmium, mercury		
	BfR Recommendation XXXVI	German Regulations for migration		
Food Contact	US FDA CFR 21, 176.170	For contact with aqueous and fatty food		
	US FDA CFR 21, 176.180	For contact with dry food		

Core Competencies

Unit - Bhadrachalam

- 8.0 Lakh TPA Paper and Paper Board Production Capacity
- 1.2 Lakh TPA Bleached Chemi Thermo Mechanical Pulp (BCTMP) Pulp Capacity
- 100% Self Sufficiency in Power through in-house Co-Generation Power Plant
- Green Covered area so far 9.53 Lakh acres through Social and Farm Forestry.
- ✤ 47.4% of total energy in 2022-23 is from RENEWABLE SOURCES
- Carbon Negative for 18 Consecutive years
- ✤ Water Positive for 21 years in a row
- Solid Waste Recycling Positive for the last 16 years
- Green Co Platinum Plus Certified by CII-GBC
- TPM Methodology for manufacturing excellence
- Adopting I 4.0, IOT Based predictive models for energy & process optimization

Energy Efficiency in Compressed Air System

Sankey Diagram for Compressed Air

Where to avoid Compressed Air – Portable tools

Compressed air operated portable tools

Electrical or battery operated portable tools

Pneumatic equivalent 70 kw can be operated with electrical 7 kw

Where to avoid Compressed Air – Self Cleaning

Apart from energy consumption, such injuries may happen while cleaning with common industrial compressed air jet

For such applications, special equipment with air blower or transvector nozzle will save energy in compressed air system to large extend.

Slide # - 8

Initial Arrangement at ITC PSPD in 2000

Location	Cmprs	Туре	Kw	Air flow	Pressure
Utility compressor house	1	Reciprocating	160	14.8	6.5
Utility compressor house	2	Reciprocating	160	14.8	6.5
Utility compressor house	3	Reciprocating	160	14.8	6.5
Utility compressor house	4	Reciprocating	160	14.8	6.5
Utility compressor house	5	Reciprocating	160	14.8	6.5
Utility compressor house	1	Reciprocating	110	14.8	4
Utility compressor house	2	Reciprocating	110	14.8	4
Utility compressor house	3	Reciprocating	110	14.8	4
Utility compressor house	4	Reciprocating	110	14.8	4
Utility compressor house	5	Reciprocating	110	14.8	4
Coal fired boiler 4	1	Reciprocating	90	15.1	3
Coal fired boiler 4	2	Reciprocating	90	15.1	3
Coal fired boiler 5	1	Reciprocating	90	15.1	3
Coal fired boiler 5	2	Reciprocating	90	15.1	3
Paper Machine 4&5 compressor house	1	Reciprocating	250	35	6.5
Paper Machine 4&5 compressor house	2	Reciprocating	250	35	6.5
Paper Machine 4&5 compressor house	3	Reciprocating	250	35	6.5
Paper Machine 4&5 compressor house	4	Reciprocating	250	35	6.5

Total air requirement : 14928 NM3/hr, Total Power : 1940 KW, Sp.Power Cons : 0.13 kw/NM3

Slide # - 9

Energy Efficiency option for such arrangement

• <u>Centralize</u>

By centralizing all the reciprocating compressors to Utilities or any other section and supply mill wide, the compressors running hours can be drastically reduced.

Optimize

There are automation solutions which will on/off as well as load/unload based on pressure set point using PLC etc. These automation solutions will further reduce specific power consumption in compressed air.

Replace Reciprocating type with Centrifugal Compressors ITC PSPD BCM in 2010

Location		Compressors	Make	Kw	Air flow	Pressure
Utility compressor house	3 Stage Centrifugal	Centac 1	Ingersoll Rand	710	95	6.5
Utility compressor house	3 Stage Centrifugal	Centac 2	Ingersoll Rand	950	120	6.5
Utility compressor house	3 Stage Centrifugal	Centac 3	Ingersoll Rand	1440	200	6.5
Coal fired boiler 4	1	Reciprocating	KG Khosla	90	15.1	3
Coal fired boiler 4	2	Reciprocating	KG Khosla	90	15.1	3
Coal fired boiler 5	1	Reciprocating	KG Khosla	90	15.1	3
Coal fired boiler 5	2	Reciprocating	KG Khosla	90	15.1	3
Coal fired boiler 7	1	Reciprocating	KG Khosla	90	15.1	3
Coal fired boiler 7	2	Reciprocating	KG Khosla	90	15.1	3
Paper Machine 4&5 compressor house	1	Reciprocating	KG Khosla	250	35	6.5
Paper Machine 4&5 compressor house	2	Reciprocating	KG Khosla	250	35	6.5
Paper Machine 4&5 compressor house	3	Reciprocating	KG Khosla	250	35	6.5
Paper Machine 4&5 compressor house	4	Reciprocating	KG Khosla	250	35	6.5

Centrifugal compressor

Total air requirement : 34348 NM3/hr, Total Power : 4120 KW, Sp.Power Cons : 0.12 kw/NM3

/3

Slide # - 11

Zero air loss traps

Timer based traps for receivers

<image>

Zero air loss traps

IFC (Intelligent Flow Controller) Units

- If you have different set points of user end and you have centralized compressed air system, then this is ideal system for saving energy.
- The IFC has to be located in user end with set point maintained as per user requirement. This unit will precisely maintain the pr. Set point as per user, thereby avoiding higher pressure of input compressor to user.

	Year	Investment Description	Investment in Crs
Savings : 118 kw Eq Annual CO ₂ reduction : 1562 Tons	2022-23	17 IFC units installation at user ends	1.38
			-4
Investment : Rs 138 lacs,	Saving : Rs 52	2 Lacs per annum, Pay back : 2.22 y	ears

Periodic Leakage Detection

Centrifugal blower in place of lobe blower in ETP

reduction: 1443 Tons

DissolvedoxygenlevelsinMBBRimprovedfrom0.31.4 ppm.

Description	UOM	Blower1	Blower2	Sulzer Blower
Actual air flow	Nm3/hr	4200.0	4550.0	8000.0
Actaul power consumed	kW	191.7	156.1	186.6
Specific Power Consumption	kW/hr/Nm3	0.0456	0.0343	0.0233

6

Investment : Rs 65 lacs, Saving : Rs 48 Lacs per annum, Pay back : 1.35 years

Optimum compression & avoid bleeding into lower pr.

3 stage 6 bar compressor running at 4 bar 710 kw, 5700 NM3/Hr + 2 no's Recip compressor 200kw, 954 NM3/Hr + 35 M3 per hour bleed from 6 bar air

2 stage 4 bar compressor 900 kw, 10800 NM3/Hr

> Savings : 307 kw Eq Annual CO₂ reduction : 2784 Tons

Investment : Rs 187 lacs, Saving : Rs 148 Lacs per annum, Pay back : 1.26 years

Dew Point Consideration & Dryers Selection

Refrigerated Dryer Dp : < 0.2 kg/cm² Dew point min : 2 °C

Heat of Compression Dryer

Desiccant Dryers Dp : 0.6 kg/cm² Dew point min : -60 °C

Heat reactivated Dryer

Summary of savings

Year	Compressors Details	Locations	Power	Air	Sp. Gen	Sp. Power
			Kw	NM3/Hr	NM3/kw	kw/NM3
2000	18 reciprocating compressors	4 areas in mill	1940	14928	7.695	0.130
2010	3 centrifugal & 6 reciprocating	5 areas in mill	4120	34348.8	8.337	0.120
2020	4 centrifugal & 1 reciprocating	2 areas in mill	4550	38730	8.512	0.117
2024	4 centrifugal compressors	1 area in mill	4540	42000	9.251	0.108

Centac1 (2003, 0.65 Crores), Centac2 (2006, 0.9 Crores)

Centac3 (2007, 1.17 Crores), Centac4 (2019, 1.3 Crores)

Centac5 (2021, 1.6 Crores), New Centac1 (2023, 1.87 Crores)

By implementing all the above energy saving investments and practices, the specific power brought down from 0.130 kw/NM³ to 0.108 kw/NM³ (equivalent to saving of about 0.9 MW for ITC PSPD BCM unit compressed air consumption of 42000 M³/Hr)

Eq Annual CO,

reduction: 11911 Tons

Energy Efficiency in Chilled Water System

Chillers

➢ Try to Centralize chilled water system, the chillers become larger and specific energy will come down. Also with larger chilled water and cooling tower pumps, the pumping energy will also come down.

- Switch over from Vapor Absorption Chiller to Vapor compression chiller, if the thermal energy is not from waste.
 - The COP of VAM chiller is around 1.3 to 1.5
 - The COP of VC chiller is around 4

Chiller replacement case studies at ITC PSPD BCM

Year	Chillers	Locations	Electrical Power consumed	Steam saved	Net Annual Savings
			Kw	ТРН	Lacs Rs
2018	VAM chiller replaced with 325 TR Screw Chiller	PM6	202	1	8.24
2019	VAM chiller replaced with 340 TR Screw Chiller	PM4	206	1	15.51
2019	2 nos VAM chillers replaced with 1 nos 600 TR Centrifugal Chiller	Pulp mill ClO2 plant	390	3	51
2021	2 nos VAM chiller replaced with 2 nos 600 TR Centrifugal Chillers (1200 TR)	Pulp mill Ozone plant	780	5	160

The investments in electrically operated chillers are as follows:

Screw Chillers (2018, 42 lacs investment & 2022, 38 lacs investment)

Centrifugal Chillers (2019 & 21, 450 lacs investment)

Total investment in electrically operated chillers is 5.3 crores, the payback is about 2.25 years.

Eq Annual CO₂ reduction : 10496 Tons

Eco friendly low/medium pressure refrigerant

	UOM	Vendor1	Vendor2	Vendor3	Vendor4	Vendor5
Refrigerant	-	R 134a	R 514a	R 134a	R 134a	R 134a
Motor Rating	KW	436	390	415	441	421
Landed price	Lakhs Rs	114.5	119.1	131.7	132.1	142.7

Description	R514a	R134a
Global Warming Potential	< 2	1320
Ozone Depletion Potential	0	0
Energy Efficiency	13.5% over next competitor	Baseline
Leakage Rate	< 0.5% per year	2 % per year
Short Atmospheric Lifetime	22 days	13.4 years

Pulp mill CIO2 plant and Ozone plant chillers are replaced with the same.

Investment 450 lacs, savings per annum 211 lacs, payback period 2.13 years.

Auto Tube Cleaning System

20% energy reduction from unclean condenser to a clean condenser.

Total investment in 8 nos ATCS for 8 nos running chillers is 0.5 crores, **the payback is about 2.39 years.**

Slide # - 23

Air Conditioner to Chilled Water Fan Coil Units

Split AC

Wall mounted Chilled Fan Coil Unit

Floor mounted Chilled Fan Coil Unit

If there is margin in chiller replace Air Conditioners with AHUs or FCUs.

Centrifugal Chiller: 600 TR, Power: 390 kw, Specific power: 0.650 kw/TR

Screw Chiller: 340 TR, Power: 206 kw, Specific power: 0.605 kw/TR

Air Conditioner: 1.5 TR, Power: 1.6 kw, Specific power: 1.05 kw/TR

Air conditioner shifting to Chilled water not only saves power, but also saves in GHG emissions by reduction in refrigerant top up in operational years.

With auxiliary power added also, there would be minimum saving of 25% energy.

Nano particles in Chilled water Circuit

Hexagonal mats in Air circuit of HVAC

It is a fully sustainable innovative product developed, produced and patented in Japan. It is **made of a special ceramic** that naturally emits **specific infrared rays** able to **break down clusters of water molecules** present in the **air so that a larger surface area is in contact with the fins of the AC unit**. This allows the AC unit to **reach the desired temperature faster and reduces the load on the compressor** so that it is able to work more efficiently consuming less energy.

Other Benefits :

- > Air Purification improvement due to *ionization*
- PM2.5 and PM10 reduction by up to ~ 60%
- Pathogens removal Effects on Viruses
- No risk exposing oneself to high quantities of negative air ions
- "Air quality" enhancement more efficiency & energy at work

The mats provided in ACs/HVAC system will reduce power consumption by 25%.

