INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

IPPTA ZONAL SEMINAR 2023

Jointly organized with CSIR-Central Food Technological Research Institute at CFTRI Auditorium, Mysore.

"Sustainable Hydrophobic Coating on Paper Based on Natural Rubber Latex and Butyl Stearate"

Ram Kumar Deshmukh (Ph.D.)

Praveen Kumar Kunam (MTech.) Shefali Tripathi (Ph.D.)

Prof. Kirtiraj K. Gaikwad (Assistant Professor)

Department of Paper Technology, IIT Roorkee, Saharanpur Campus

ARCE COMMADON SUSTERSN

Introduction

Introduction

 The global Paper & paperboard packaging market is estimated grow from USD 200 billion in 2022 and is projected to reach USD 254.5 billion by 2026, at a CAGR of 5.0% during the forecast period

Although paper based packaging has huge market potential, the main drawback is its poor barrier properties.

Importance of Barrier in Food Packaging

Barrier properties (oxygen & moisture)

Extended shelf life and to limit food deterioration

The food deterioration is mainly governed by oxidation process or caused by aerobic bacteria and mold growth in presence of Oxygen and moisture. (Sugiyama, 2006).

- PUPPROPYLENE

 Provides Flexibility and Strength

 Provides Strength

 Excellent Printable Surface

 Provides Strength
- Susceptible to lose its barrier because of flexural cracking.
- Costs associated with this solution (to make high barrier)
- ✓ Processing
- \checkmark limits their recyclability
- ✓ Limits their biodegradability (or compostability)

Sustainable coatings on paper for enhancing properties

Hydrophobic coatings

- Hydrophobicity comes from the Greek word
 - Hydro(water)
 - Phobicity(fear)
- It refers to the physical property of a material that repels water.
- The process of coating the surface of a material with hydrophobic material in order to avoid sticking of liquids on that surface is called Hydrophobic

Coating.

Paper is a hydrophilic material. In order to make paper hydrophobic we need to use hydrophobic coating.

Natural Rubber Latex

Natural Rubber Latex

- Natural Latex is produced from the *Hevea Brasiliensis* rubber tree consists of poly-cis-1,4-isoprene polymer.
- > These trees primarily found in Thailand, Indonesia, Malaysia, and Liberia.
- Natural Latex is a cloudy, white liquid that is collected by cutting thin strips of bark from the tree.
- The latex is placed into a centrifuge, stabilizers are added, and the latex is centrifuged to remove some of the water & increase the rubber content of the latex. latex concentrate, and contains roughly 60% rubber.

Natural Rubber Latex

The fatty acid composition of Hevea lipid extracts shows 9 different species including myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0) and furanoid fatty acid

Properties of NRL

Properties

- High molecular weight
- High elasticity
- Recyclability
- Ease of film-forming

Disadvantages

- Poor grease barrier resistance
- Generally unable to bear high loads
- Poor weather resistance

Applications

- Coatings
- Adhesives
- Eraser
- Mattresses

- Gloves
- Power transmission belts
- Chewing gum

Bio-degradable

Butyl Stearate

Butyl Stearate

- Butyl stearate, also called octadecanoic acid, is an organic chemical compound which belongs to the family of alkyl esters of fatty acids.
- Butyl stearate is a long-chain fatty acid ester composed of butanol and stearic acid.

Properties

- tendency to form hydrophobic, non-greasy film
- Iow viscosity
- ideal lubricant in metalworking
- additive for paints& printing inks

Butyl Stearate

Problem with using synthetic based hydrophobic coatings

Sustainability

Due to the presence of synthetic plastics, commercial hydrophobic coatings are not bio-degradable

As synthetic polymer coatings will be done on papers, recycling is not possible

Synthetic polymers are harmful to both humans health and environment

Commercial hydrophobic coatings are not sustainable because they are produced from synthetic plastics

Hydrophobic coatings available in the market are highly costly

Coating Development

Mechanism

Chemistry behind Hydrophobicity of Coating solution

- □ Butyl stearate has a non-polar molecular structure, which means it is not attracted to water molecules.
- □ The hydrophobic nature of butyl stearate prevents it from forming a strong bond with water molecules.
- □ The hydrocarbon chains of butyl stearate are too long and are not able to interact with water molecules.
- □ Butyl stearate is a wax-like substance and therefore forms a protective barrier on the surface

Technology Development

Paper substrates with hydrophobic coating

Coated on 90 GSM white paper

Technology Development

Demonstration of Water resistance of coated paper

16

Wettability

- The uncoated paper showed the lowest contact angle which is equivalent to 0° confirming its hydrophilicity.
- After coating with NRL, the contact angle suddenly raised to 80° showing intermediate wetting behaviour
- At 50% butyl stearate concentration contact angle exceeded 90° showing hydrophobic behaviour.

Mechanical Properties coated paper

Sample	Tensile Strength(N)	TS Index(Nm/g)	Elongation at break(%)	Burst Strength(kg/cm ²)	Contact Angle(°)
Uncoated	21.04±0.24ª	15.41±0.17 ^a	2.68±0.05 ^{b,c}	9.7±0.18ª	0±0ª
Neat NRL	38.55±0.99°	28.23±0.73°	3.33±0.01°	10.±0.05ª	80.44 ± 0.56^{b}
NRL/BS10	31.16±1.24 ^d	22.83±0.91 ^d	2.58±0.11 ^b	10.±0.13ª	84.16±0.36°
NRL/BS30	27.66±0.35 ^b	20.26±0.25 ^b	1.92±0.10 ^a	9.3±0.79ª	88.20±0.24 ^d
NRL/BS50	25.68±0.67 ^b	18.82±0.49 ^b	1.53±0.11ª	9.1±0.39ª	91.12±0.32e

Values are represented as Mean \pm Standard deviation obtained from triplicate analysis.

Values within the same column having different superscripts a,b,c are significant different at p<0.05.

Moisture barrier propeties

Comparative study

Reference	Coating Material	WVTR(g/ cm²/ day)	Contact Angle(°)	COBB Value(g/m ²)
(Adibi et al., 2022)	Natural rubber latex	300	96.9	2
(Hamdani et al., 2020)	Zein	500	90	20
(Koppolu et al., 2019)(N et al., 2020a)	Polylactic acid	57	-	3.17
(Willberg- Keyriläinen et al., 2018)	Cellulose ester	308 <u>+</u> 17	66.4±1.8	-
(Ni et al., 2018)	Corn starch	234.12	117.93	
(Azin et al., 2022)	Natural rubber latex	140	106	8
Present Study	Natural rubber latex and Butyl stearate	348 <u>+</u> 21	90.6	0.8

Novel coating formulation comprising Natural rubber latex and Butyl stearate there of.

Coating formulation preparation method including proportions and method used to mix components have been developed.

> Coating solution application method on the paper substrate.

