Bamboo as a Solution for Food Packaging

IPPTA Zonal Seminar 2023 at CFTIR, Mysore Karnataka

<u>Gunjan Dhiman</u>, Deepak Sharma, Arvind Sharma, Shubhang Bhardwaj Priti S. Lal and Manoj K. Gupta

Bamboo is a perennial grass belongs to grass family Poaceae.

Scenario of Ecofriendly Food Packaging

Source:-futuremarketinsights.com, mordrintelligence.com

Various Packaging & Their Merits

Plastic Packaging	Recycle Fiber	Virgin Fiber /Bamboo packaging
Non bio degradable it takes 20 to 500 years	Bio compostable	Bio compostable & safe for environment
Cheaper to produce but hazardous	High investment infrastructure facilities	Cheaper to produce
Required non renewable natural resources to produce	Recovery rate of around 50 per cent	Sustainable and easy to grow
Produce toxic substance when it breaks down and harms the environment	Recycle pulp have some toxic chemicals, bleaching agents and hydrocarbons	Natural pulp with antibacterial properties

Development of Basic Properties for Food Packaging Grade paper or board by Surface Coating

Barrier to moisture, gases and oils

Non toxic

Non biodegradable surface coating

Polyethylene, waxes, polyvinyldene chloride etc are commonly used

Green chemical surface coating

Oxidized starch, cationic starch, acrylamide polymer, polyvinyl alcohol.

Resistance to physical damage

Jelse, K., Eriksson, E. and Einarson, E., 2011

Objective

• To produce pulp from juvenile and matured bamboo by CTMP process.

- To accomplishment of general requirements for food packaging grade product by using environment friendly chemicals for *sizing and coating*.
- To testing of barrier properties i.e, grease proofing, resistance to air and water flow.

Schematic Diagram of Study

Materials and Methodology

1.5 year Bamboo in field

1.5 year Bamboo cutting for sampling

Bamboo plant sample

Dendro calamus strictus bamboo is planted in CPPRI (Central Pulp and Paper Research Institute) nursery and backyard.

Proximate Chemical Analysis

CTMP Pulping

Process Condition:- Ambient to 140 °C in 60 min, at 140 °C for 2 hrs, Bath ratio – 1:3.5

Particulars	Juvenile		Mature	
Alkali Charge %	4	6	4	6
Yield %	94.6	91.4	92.5	89.5
Total solids %	1.9	2.8	1.6	2.3

Result of me steaming of juvenile and matured bamboo chips

					Refining	of Juvenile	Bamboo		「「「
Unrefined					Stage-1 Gap -35 thou	Stage -2 Gap -15thou	Stage -3 Gap -8thou		
pulp	Consist RPM-1	ency 4 500	-5%						
Particulars	Juv	enile	Ma	ature	Refining	g of Mature	Bamboo		
NaOH %	4	6	4	6					Contract of the local division of the local
pulp yield, %	87.5	ð0. <i>2</i>	85.0	04. <i>2</i>		. 🖂			A. There
Reject, %	1.2	0.9	2.0	1.6					
yield, %	00.5	02.2	05.0	02.0			St. O		and the second second
Freeness, CSF (ml)	390	404	426	417	Stage -1 Gap -35thou	Stage -2 Gap -15thou	Gap -8thou	Satge -4 Gap -5thou	
Brightness (%ISO)	31.1	32.3	30.6	32.1	1			11	

Fiber Morphology Juvenile vs. Matured Bamboo

Parameters	Juvenile	Matured
	Bamboo	Bamboo
Average fibre length (L), mm	1.62 <	1.83
Average fibre width (D), µm	13.8	16.1
Average Lumen diameter (d), µm	3.52	4.00
Average Cell wall thickness (w), µr	n <u>5.14</u>	6.05
Runkel Ratio (2w/d)	2.92	3.45
Slenderness Ratio (L/D)	(117.4)	113.7
Flexibility Coefficient, d/D*100	25.5	24.8
Rigidity Coefficient, 2w/D	0.745	0.752
Solid Factor, (D ² -d ²)*L	109.9	132.4
Lucas factor, $(D^2-d^2)/(D^2+d^2)^*$	0.877	0.878

CTMP Juvenile bamboo pulp (x4)

CTMP Mature bamboo pulp (x 10)

Pulp Processing

3000 RPM

150Mesh Area 0.02 m²

Disintegration of Pulp

Disintegrated pulp

Sheet Pressing

Sheet Drying

Physical Strength Properties of Juvenile and Mature Bamboo Pulp Sheet

Surface Coating of Prepared Sheet

Mechanical Strength Properties of Juvenile and Matured Bamboo after Sizing and Coating

Barrier Property of Bamboo Pulp Hand Sheets

Air Permeance, Gurley (Sec) Water Absorbency Grease /Oil resistance Cobb60 g/m² 45200 **KIT Value** 4 %-4%-4 %-4%-40000 Juvenile Mature Juvenile Mature Air Permeance ,Gurley (S) Control 245±2 270±2 Control $\mathbf{0}$ 0 **2% AKD** 21±2 25 ± 2 2% AKD 4 5 +4%-Mature 12.4 **PVA** 12 12 **PVA** 20±1 24±1 coated 10.4 coated 3.5 2 %AKD **PVA** Coated Control Control 2% AKD **PVA coated** 18

Comparison of Bamboo CTMP Pulp v/s. Market Pulp

Physical strength Properties	Bamboo CTMP Pulp	Market Pulp
Tear Index mn m ² /g	10.3	9.4
Burst Factor	25.5	24.6
Cobb 60 (Water Absorbance)	21-25	<mark>350-</mark> 400
KIT value (Grease Proof)	12 (Yes)	3 (No)
Air Permeance (sec)	40,000-45,200	218
Cost/ton pulp	~27,265/-(27.26/ kg)	~60,000/- (60/ kg)

Conclusion

≻The Presentation focus on utilization of Juvenile Bamboo for food packaging applications in place of single use plastic .

>Morphology of bamboo indicates that juvenile bamboo is more suitable for CTMP pulping as compared to mature bamboo.

>Coating of PVA on CTMP Pulp make it more suitable for packaging of liquid food materials.

Robust mechanical properties related to food packaging have achieved after sizing and coating.

>The prepared packaging material have high air, water and oil resistant properties which supports packaging of even liquid food items too.

≻The prepared CTMP bamboo pulp is a potential substitute the market pulp available for production of molded crockery.

>The production cost of CTMP pulp comes around Rs. 28 /kg as compared to the market pulp i.e. ~Rs. 60 /kg. It is economical beneficial and help in better return on investment.

Possible Applications of Bamboo CTMP Pulp

