

Introduction

- Introduction: In recent years, the detrimental effects of single-use plastic on the environment have become increasingly apparent
- Let's discusses the environmental impact of single-use plastic, highlights the benefits and types of paper packaging, addresses challenges and considerations, and examines collaborative efforts and industry examples

The Environmental Impact of Single-Use Plastic:

 Single-use plastic poses a severe threat to our planet

The Rise of Paper-Based Food Packaging

- Biodegradability and recyclability: Paper is derived from renewable resources and can decompose naturally, making it an eco-friendly choice
- Reduced carbon footprint: The production of paper generates fewer greenhouse gas emissions compared to plastic, especially when using recycled paper
- Health considerations: Unlike certain plastics, paper-based materials are generally safer for food contact, minimizing potential health risks
- Cartons: Paper cartons, often made from recycled fibers, are commonly used for packaging milk, juices, and other beverages
- Boxes and trays: Paper boxes and trays offer excellent alternatives to plastic containers for food takeout and delivery

The Rise of Paper-Based Food Packaging

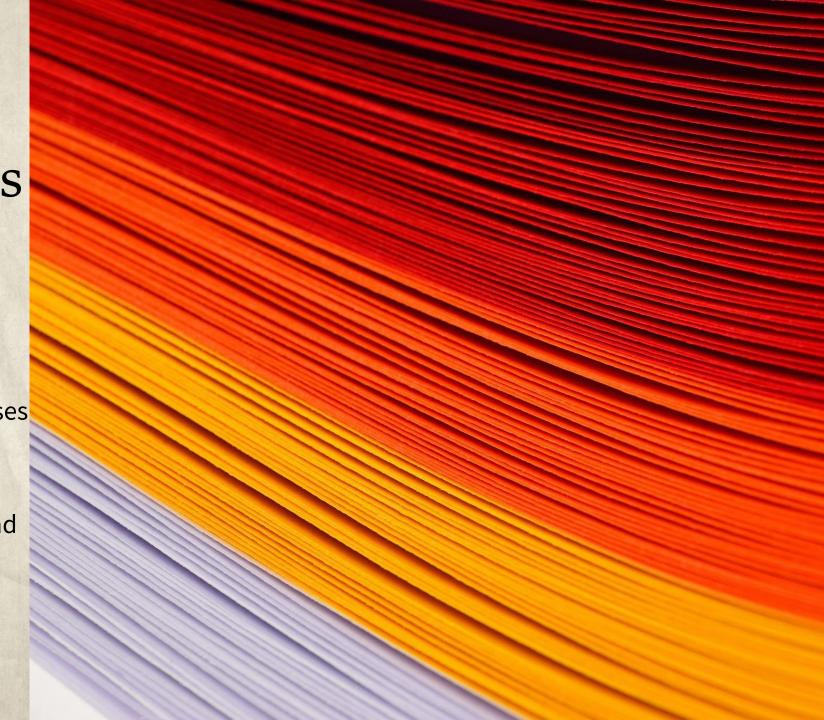
Wrappers and pouches: Paper wrappers, such as those used for sandwiches or snacks,

Shopping Bags: Instead of using plastic bags, opt for paper bags

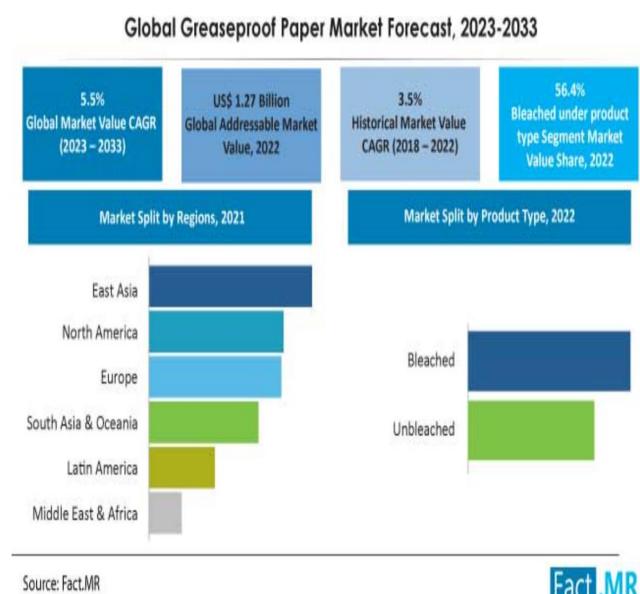
Food Packaging: Look for food products that use paper-based packaging instead of plastic

Straws: Instead of plastic straws, consider using paper straws

Takeout Containers: Many restaurants are shifting towards using paper-based takeout containers rather than plastic containers


Coffee Cups: Some coffee shops offer paper cups that are lined with a thin layer of biodegradable material instead of plastic

Wrapping Paper: Instead of using plastic wrapping for gifts, use recyclable or compostable paper-based wrapping paper


Collaborative Efforts and Industry Examples

- Government initiatives:
 Governments worldwide are
 implementing regulations to
 reduce single-use plastic
 waste, incentivizing businesses
 to adopt paper-based
 alternatives
- Industry shifts: Many food and beverage companies have embraced sustainable practices by transitioning to paper-based packaging

Greaseproof paper market 2023-2033

- The global greaseproof paper market has experienced significant growth, reaching a valuation of US\$1.27 billion in 2023
- It is projected to grow at a compound annual growth rate of 5.5% and reach US\$2.1 billion by 2033
- Greaseproof paper plays a crucial role in food storage and packaging due to its ability to repel grease, making it suitable for long-term food preservation
- The demand for greaseproof paper is expected to rise in the coming years, primarily driven by the food packaging sector's high requirements

Public opinion

Environmental Concern: Many individuals are increasingly concerned about the environmental impact of single-use plastic, particularly in the food industry where packaging waste is significant

Health and Safety: Consumers often perceive paper-based packaging as safer for food contact compared to certain types of plastic

Aesthetics and Perception: The visual appeal and feel of paper packaging can evoke a sense of authenticity and sustainability

Recycling and Waste Management: Paper is widely recognized as a recyclable material, and consumers appreciate the ease of recycling paper-based packaging compared to certain types of plastic

Public opinion

Functional Considerations:
While paper-based packaging
has its advantages, some
consumers express concerns
about its durability and
resistance to moisture or grease

Education and Awareness:
Consumer sentiment is often
influenced by awareness
campaigns, educational
initiatives, and transparent
labeling

The Way Forward

 Consumer choices and behavior: As individuals, we can contribute to this movement by actively choosing paper-based alternatives, supporting brands committed to sustainability, and advocating for responsible packaging choices

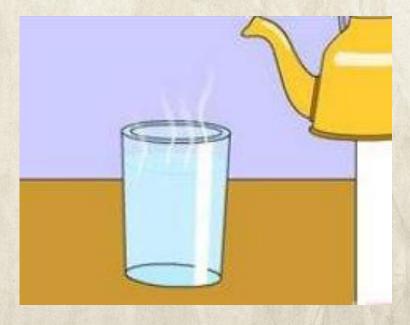
Innovation and research: Continued investment in research and development is essential for improving the durability, performance, and recyclability of paperbased packaging solutions

BIODEGRADABLE POLYMERS FOR HIGH BARRIER PAPER COATING

Coating material	Water vapor transmission rate (g or cc/m²/day)		Oxygen transmission rate (cc/m²/day)		COBB (g/m²)		Contact angle	
	Uncoated	Coated	Uncoated	Coated	Uncoated	Coated	Uncoated	Coated
Polylactic acid	339	57		302	25.6	3.17	_	_
Polyvinyl alcohol/zein	826.0 ± 18.8	288.0 ± 14.5	_	128.0 ± 14.7	_	_	105.0 ± 0.0	98.8 ± 2.4
Cellulose nanofibers and nano clay	28.55 ± 0.7	5 ± 0.2	_	6.7 ± 0.05	-	-	-	-
Chitosan + micro crystalline cellulose + protein	99.6	60.3	-	-	95.43	76.13	-	-
Chitosan	298.17 ± 3.34	280.69 ± 2.92	_	_	45.21 ± 2.75	39.74 ± 1.44	_	_
Chitosan	501.5 ± 3.4	594 ± 57.9	> 10,000	1.1 ± 1.3	_	_	_	_
Cellulose ester	566 ± 45	1805 ± 151	>400,000	$18,050 \pm 1510$	_	_	59.8 ± 2.4	66.4 ± 1.8
Bio-polyethylene	566 ± 45	4 ± 1	>400,000	11090 ± 986	_	_	59.8 ± 2.4	97.6 ± 2.9
Polylactic acid	566 ± 45	52 ± 6	>400,000	386 ± 37	_	_	59.8 ± 2.4	77.2 ± 1.1
Cellulose undecanoyl ester	622.4 ± 21.4	192.0 ± 8.1	_	_	_	_	0-10	100-110
Chitosan-graft -Poly(dimethylsiloxane)	~ 1200	~ 800	_	-	~ 35	~15	70	120
Zein	~ 1200	~ 500	_	_	~35	~ 25	70	90
Poly(dimethylsiloxane)-Zein	~ 1200	~ 400	_	_	~35	~5	70	100
Chitosan-Zein	~ 1200	~ 1300	_	_	~35	~30	70	90
Poly(dimethylsiloxane)- Chitosan-Zein	~ 1200	~ 1000	_	-	~ 35	~20	70	120
Polylactic acid and Polycap- rolactone	~ 800	~ 600	_	-	~ 5	~4	68	72
Semi-crystalline Polylactic acid	-	-	_	_	~ 25	~5	62	79
Corn starch	297.36	234.12	_	_	_	_	64.47	117.93
Natural rubber latex and alpha-1,3 glucan	_	-	-	_	~ 160	~30	53.8	94.2

Classification of different kinds of polymers, such as biodegradable and non-biodegradable and classification of biodegradable polymers based on origin, such as synthetic and natural

Petro based Non-**Bio based Non**biodegradable biodegradable **Epoxy PE** Bio PE Bio PET PP PVC UPE Bio PA PFA PEF Polymer Matrix PBS **PBAT Bio-PBS** PLA PHAs **PCL** PGA Starch Cellulose Petro based bio degradable Bio based biodegradable

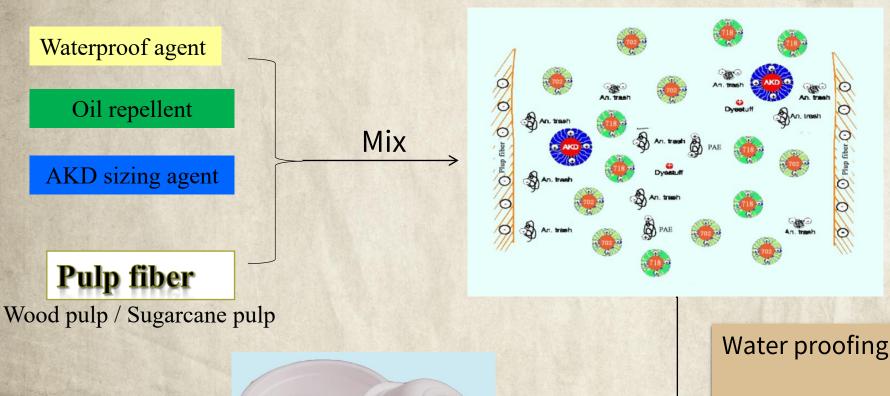

Biodegradable polymers

Synthetic	Natural		
PLA			
PGA	Starch		
PBS	Cellulose		
PBAT	Chitosan		
PCL	Lipid		
PHAs	Protein		
PPC			

Waterproof Agent

Improve the binding capacity and mechanical properties of the fibers, such as the tensile property, stiffness and water resistance of pulp fiber.

Product Available:


Barrier Coating:

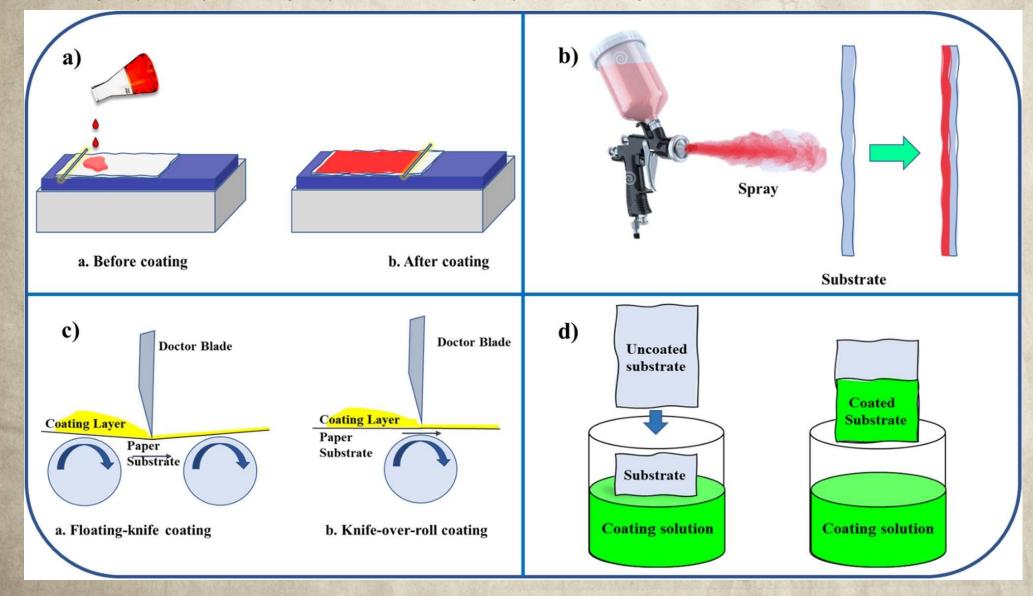
Dosage is 0.25% (relative to dry pulp) + F-type Grease Proof agent 0.1%

Oil repellent | Application

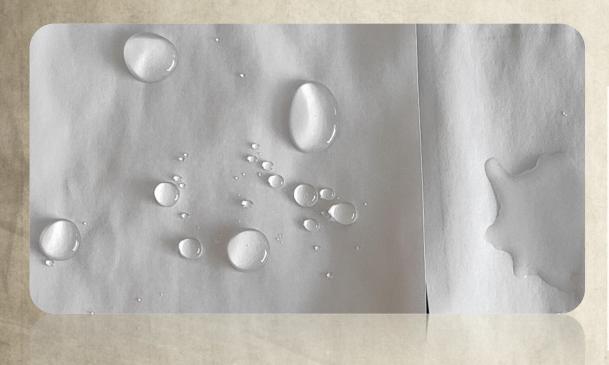
Pulp molding procedure

Dry

Water proofing product Usage:


The range of product dosage is in the range of

0.5%-3.0% (relative to dry pulp)



Different methods for coating on the paper substrate:

a) Bar coating. B) Spray coating. C) Knife coating. D) Dip coating

SURFACE BARRIER AGENT

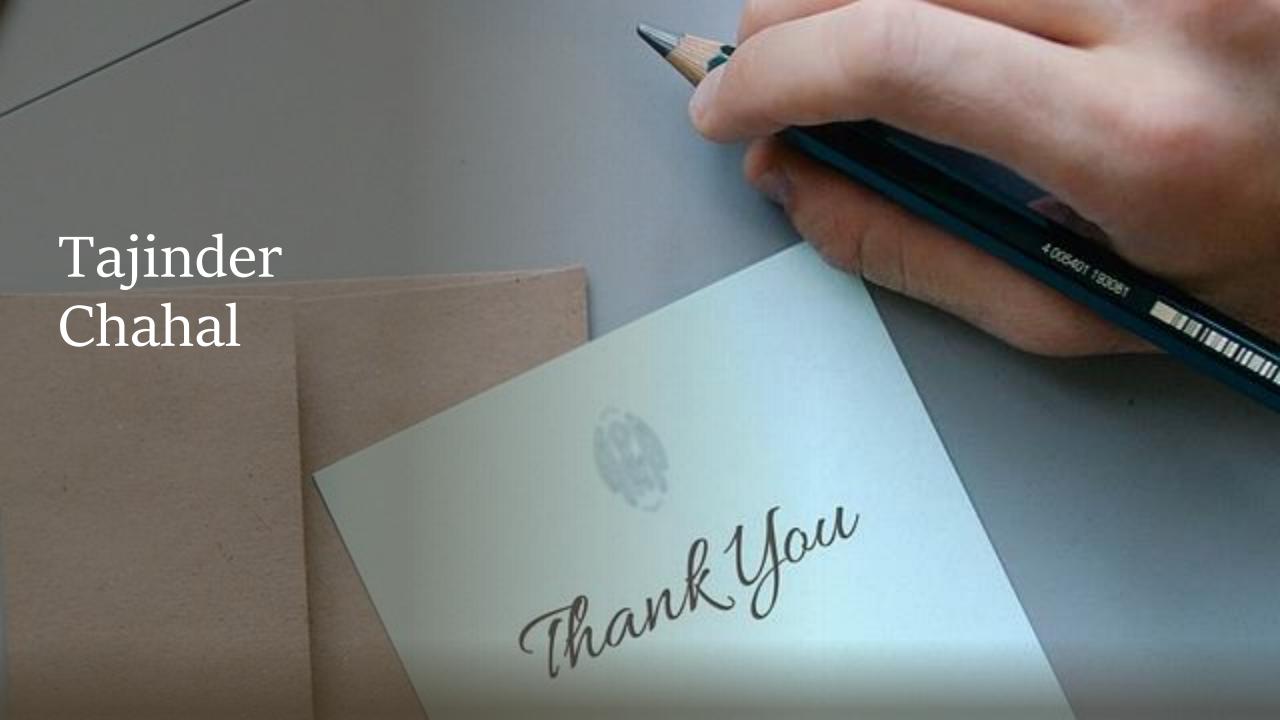
Physical & Chemical Properties of Surface Barrier Products

Items	Requirement		
Appearance	White liquid		
Solid Content(%)	40.0±1.0		
pH value	6.0-10.0		
Viscosity(mPa·s, 25° C)	< ₅₀₀		
Ionicity	Weak anionic		

Surface application:

The recommended dosage is 4-10g/m². Before used, it is recommended to check compatibility with other chemicals.

Conclusion


REPLACING SINGLE-USE PLASTIC WITH PAPER-BASED ALTERNATIVES, ESPECIALLY IN FOOD PACKAGING, IS AN IMPROTANT STEP TOWARDS A MORE SUSTAINABLE FUTURE

BY UTILIZING PAPER CARTONS, BOXES, WRAPPERS, AND CUPS, WE CAN SIGNIFICANTLY REDUCE PLASTIC WASTE AND ITS DETRIMENTAL EFFECTS ON THE ENVIRONMENT

THROUGH COLLABORATIVE EFFORTS AND CONSCIOUS CHOICES, WE CAN CREATE A WORLD WHERE PAPER BECOMES A VIABLE AND ECO-FRIENDLY SUBSTITUTE FOR SINGLE-USE PLASTICS

