Paper Industry towards Green Manufacturing

Hydrogen peroxide - a quick solution to rectify foul conditions in activated sludge process.

GREEN MANUFACTURING

It is beyond pollution control and beyond sustainability.

The 5 principles of Green Manufacturing

- Lesser energy consumption
- Use the least natural resources
- Reduce pollution and waste
- Moderate emission
- Recycle and reuse materials (through out the life cycle of product)

PAPER INDUSTRY TOWORDS GREEN MANUFACTURING

Image of Paper Industry then

ACTIVATED SLUDGE PROCESS

Typical Flow-Through Activated Sludge Plant

FUNCTIONS OF AERATION TANK / ACTIVATED SLUDGE

- Flocs of active bacteria suspended in aerobic sludge.
- Aerated by pumping air/oxygen or by surface aerators.
- Organic carbons oxidized to produce new cells, carbon dioxide and water.

\checkmark Organic material + O₂ + nutrients \rightarrow CO₂ + H₂O + New Cells + nutrients + Energy

- Another important reaction occurs i.e. Nitrification and Denitrification.
- ✓ Nitrification: $NH_3 + O_2 \rightarrow NO_2^- + 3H^+ + 2e^- \& NO_2^- + H_2O \rightarrow NO_3^- + 2H^+ + 2e^-$
- ✓ Denitrification: $NO_3 + R-OH \rightarrow N_2 + CO_2 + H_2O + OH^-$

FOUL / SEPTIC CONDITION

- Aerobic functions come to a halt.
- Nitrification-denitrification stops.
- DO reduces and anaerobic activities started.
- Rotten egg or fishy smell comes out.
- Lot of foam seen on the lagoon.

CAUSES OF FOUL / SEPTIC CONDITION

- Organic overloading.
- Short circuiting or short hydraulic detention.
- Overgrowth of SRB.
- Old sludge accumulation.
- pH shock.
- High temperature and or temperature shock.
- Partial nitrification.

ETP SET-UP AT CLIENT'S PLANT

CONTROL DATA DURING NORMAL OPERATION

SI.	Control			Exit 1° clarifier / Entry	Effluent Exit	
No.	Parameters	UOM	Entry 1° clarifier	Aeration Tank	2° clarifier	Aeration tank
			2885	190	67	
1	TSS	mg/l	(1540 – 3460)	(105 – 300)	(36 – 90)	
			2490	513	153	70.2%
2	COD	mg/l	(1216 – 3164)	(280 – 650)	(66 – 200)	COD reduction
			1159	262	22	91.6%
3	BOD	mg/l	(670 – 1490)	(176 – 310)	(13 - 28)	BOD reduction
4	рН	-	6.6 - 7.0	6.8 - 7.2	7.1 - 7.3	
						0.7
5	DO	mg/l				(0.4 - 2.8)
						1700
6	MLSS	mg/l				(1520 – 1860)
						1213
7	MLVSS	mg/l				(1098 – 1365)
8	MLVSS/MLSS	Ratio				0.71

MICROBES FOUND DURING MICROSCOPIC ANALYSIS

MICROBES FOUND DURING MICROSCOPIC ANALYSIS contd.....

CONTROL DATA DURING TROUBLED PERIOD

SI.	Control			Exit 1° clarifier / Entry	Effluent Exit	
No.	Parameters	UOM	Entry 1° clarifier	Aeration Tank	2° clarifier	Aeration tank
			4863	256	113	
1	TSS	mg/l	(3554 – 7260)	(174 – 364)	(92 – 160)	
			3462	667	219	67.0%
2	COD	mg/l	(2741 – 4060)	(548 – 802)	(193 – 249)	COD reduction
			1365	275	38	86.1%
3	BOD	mg/l	(1110 – 1670)	(257 – 310)	(34 - 40)	BOD reduction
4	рН	-	6.7 - 7.0	6.9 - 7.2	7.1 - 7.4	
						0.2
5	DO	mg/l				(0.0 - 0.2)
						2240
6	MLSS	mg/l				(1758 – 2852)
						1130
7	MLVSS	mg/l				(881 – 1386)
8	MLVSS/MLSS	Ratio				0.50

CONTROL DATA DURING H₂O₂ DOSING

SI.	Control			Exit 1° clarifier / Entry	Effluent Exit	
No.	Parameters	UOM	Entry 1° clarifier	Aeration Tank	2° clarifier	Aeration tank
			4112	82	53	
1	TSS	mg/l	(2108 – 5860)	(44 – 89)	(33 – 104)	
			3697	361	98	72.9%
2	COD	mg/l	(4114 – 5400)	(287 – 512)	(82 – 128)	COD reduction
			767	183	15	91.8%
3	BOD	mg/l	(640 – 1021)	(140 – 253)	(10 - 22)	BOD reduction
4	рН	-	6.7 - 7.2	6.5 - 6.8	6.8 - 7.1	
						1.4
5	DO	mg/l				(0.6 – 2.3)
						1570
6	MLSS	mg/l				(1160 – 1987)
						1320
7	MLVSS	mg/l				(1028 – 1622)
8	MLVSS/MLSS	Ratio				0.84

DO IN AERATION TANK - TREND CHART

BOD & COD IN SECONDARY CLARIFIER OUTLET : TREND CHART

H₂O₂ DOSING POINT

DECOMPOSITION OF H₂O₂ IN ACTIVATED SLUDGE

- Equation: $2H_2O_2 \xrightarrow{catalase\ enzyme} 2H_2O + O_2^{\uparrow}$
- Molecular wt.: 68.02936 g -----> 36.03056 g + 31.9988 g
- Percentage (%): 100% -----> 52.96% + 47.04%
- Oxygen (O_2) generated is 47.04% from one mol of H_2O_2 at 100% conc.
- In 50% H_2O_2 concentration, the oxygen availability is 23.52%.
- Similarly in 35% H2O2, the oxygen availability is (47.04 x 0.35) 16.46%

H ₂ O ₂ solution strength	3%	27%	35%	50%
O ₂ availability % in solution	1.41%	12.70%	16.46%	23.52%
Specific Gravity (SG)	1.0059	1.10	1.13	1.20
H ₂ O ₂ g/l	1008.94	1098.81	1128.77	1199.46
O ₂ , kg/l	0.014	0.140	0.186	0.282
0 ₂ , g/l	14	140	186	282

COUNTER ACTIONS BY H₂O₂ TO THE ACTIONS BY SRB

- SRBs reduce sulfates to sulfide in low DO condition.
- $H_2S + H_2O_2 \rightarrow S + 2H_2O$
- At acidic/neutral pH, H2O2 follow above stoichiometry.
- Since waste streams often contain other reactive materials, it may require more H_2O_2 .
- In alkaline solution (> pH 8), the dominant reaction is: Na₂S + 4 H₂O₂ → Na₂SO₄ + 4 H₂O
- H_2O_2 consumption can be lowered in combination with air.
- There could be sulfur oxidizing bacteria like *Beggiatoa*.
- They convert sulfur in to sulfates like sulfuric acid and lower the pH.
 ROH₂ + S + 2CO₂ + 2H₂O → H₂SO₄ + 2(CH₂O)
- pH observed low during H_2O_2 dosing. pH may be improved in presence of Fenton's solution.
- Beggiatoa consume 85% of oxygen due to sulfide oxidation.
- Only 15% are consumed by rest of the microorganisms.

CONCLUSION / SUMMARY

- H_2O_2 proved to be the best solution to get out of septic conditions.
- Up to 100 mg/l of H_2O_2 can be dosed without any fear of inhibition to microorganisms.
- H_2O_2 increases DO level in the aeration tank, which inhibits SRBs.
- It may be used regularly along with diffused or surface aeration.
- Simultaneously, it reduces COD and BOD from the effluent.
- H₂O₂ may be used as pre-treatment to oxidize complex organic maters to simpler.
- For reusing of treated water in system, H₂O₂ is dosed before gravel filter and ion exchange.
- 100% of treated water can be used for agriculture as toxicity is reduced by H_2O_2 .
- Hence, it is a strong pillar towards Green Manufacturing.
- Only one drawback is it's cost of operation.

Thank you for your attention

Ŷ