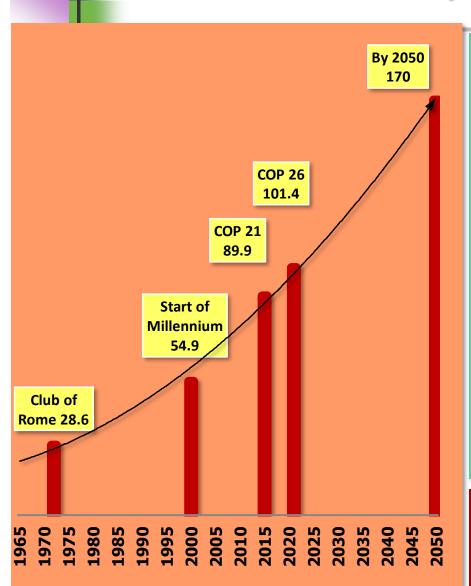
PRESERVATION OF QUALITY AND RESOURCE RECOVERY THROUGH IMPROVED LACTIC ACID FERMENTATION DURING BAGASSE STORAGE

Chinnaraj S., Rajeshkanna P. Santhakumar J., Varadarajan S. J. and R. Seenivasan, Tamilnadu Newsprint and Paper Ltd,

IPPTA AGM and SEMINAR on PREPARING PAPER INDUSTRY TOWARDS GREEN MANUFACTURING 17th & 18th March 2023, Hyderabad



Preservation of Quality and Resource Recovery through Improved Lactic Acid Fermentation During Bagasse Storage

- 1. Preamble
- 2. Present Study
 - Resource Saving & Quality
 - Waste to Value & CO, Emission Reduction

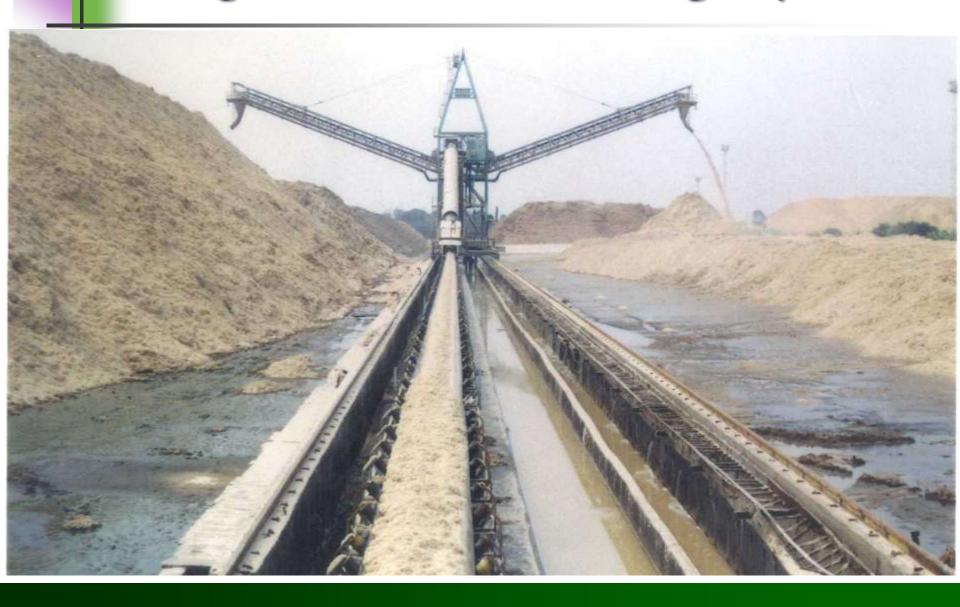
Material Extraction (Gt) from 1972-2021 and Projected to 2050

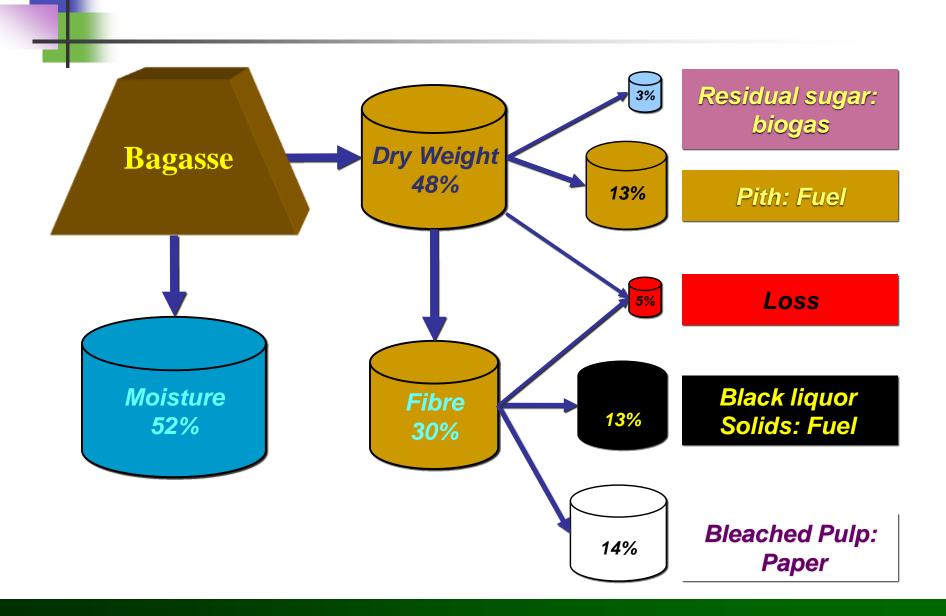
In 50 years, global use of materials has nearly quadrupled—outpacing population growth.

In 1972 as the Club of Rome's report "Limits to Growth" was published, the world consumed 28.6 Gt.

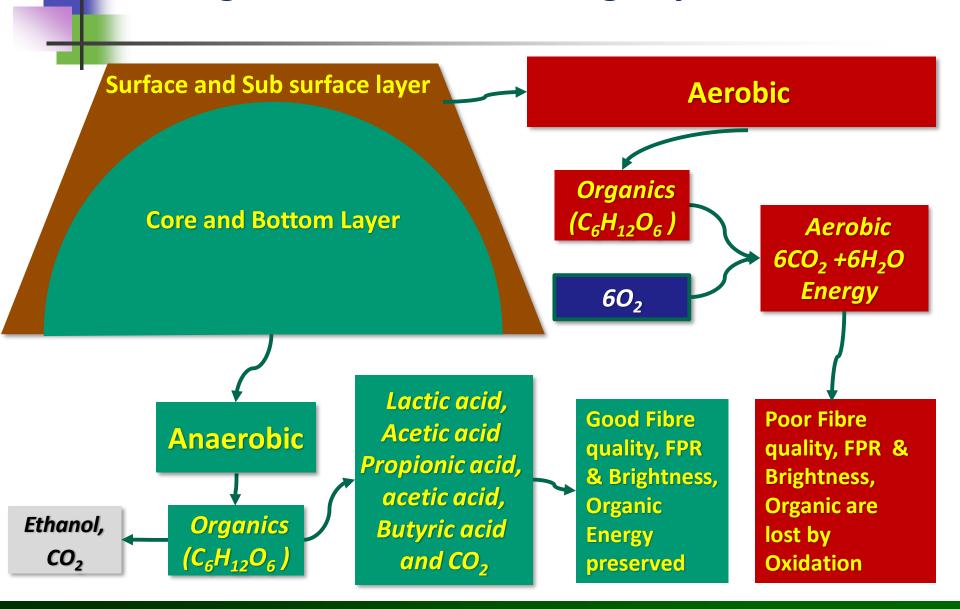
By 2000, this had gone up to 54.9 Gt. In 2019, it surpassed 100 Gt and expected to cross 170 Gt by 2050

Rising waste levels are accompanying the rapid acceleration of consumption: ultimately, over 90% of all materials extracted and used are wasted.


Only 8.6% make it back into our economy. This rate of extraction continues to threaten the planet's future and our lives.


Preservation of Quality and Resource Recovery through Improved Lactic Acid Fermentation During Bagasse Storage

- 1. Preamble
- 2. Present Study
 - Resource Saving & Quality
 - Waste to Value & CO, Emission Reduction


Bagasse: Wet Bulk Storage System

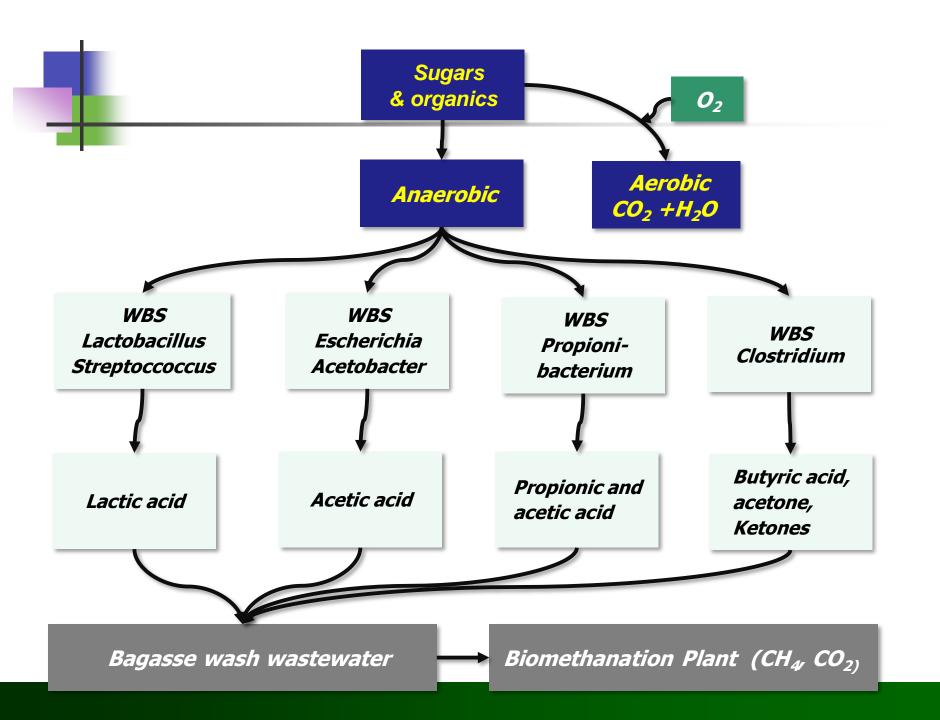
Bagasse Utilization in Paper Making Process

Bagasse: Wet-bulk Storage System

WBS System

Bagasse Wet-bulk Storage System: With Water Sprinkling Surface and Sub surface layer **Aerobic Organics** Core and Bottom Layer $(C_6H_{12}O_6)$ Aerobic 6CO₂ +6H₂O Energy 6O₂ Lactic acid, **Good Fibre Poor Fibre** Acetic acid **Anaerobic** quality, FPR quality, FPR & Propionic acid, & Brightness, Brightness, acetic acid, **Organic** Organic are **Organics** Ethanol, **Butyric** acid **Energy** lost by $(C_6H_{12}O_6)$ CO₂ and CO, Oxidation preserved

Impact of water sprinkling on bagasse quality during storage


S. No	Period	Without water sprinkling		With water sprinkling	
		Bright. %ISO	Fibre: Pith ratio	Bright. %ISO	Fibre: Pith ratio
1	Initial	38.6	2.15:1	38.6	2.15:1
2	Two months old	37.5		37.9	
3	Three months old	28.3		36.3	
4	Four months old	22.5		35.5	
5	Six months old	18	0.5:1	33.5	2.03:1

Impact of water sprinkling on bagasse pulp quality

S. No	Particulars	Without sprink	With water sprinkling	
		Sub-surface	Bottom	Sub-surface
1	Fibre:Pith ratio	0.5:1	2.31:1	2.03:1
2	Bagasse Brightness, %ISO	18	37.5	33.5
3	Total yield, %	41.1	55.7	54.7
4	Rejects, %	2.80	0.47	0.58
5	Kappa number	54.0	10.6	11.9
6	Brightness, %ISO	18.1	39.4	36.1
7	CSF, mL	500	450	440
8	Tensile index Nm/g	24.5	67.6	61.8
9	Tear index mNm ² /g	3.98	5.64	5.23
10	Burst index kPam²/g	1.15	4.09	3.68

Preservation of Quality and Resource Recovery through Improved Lactic Acid Fermentation During Bagasse Storage

- 1. Preamble
- 2. Present Study
 - Saving Resource & Quality
 - Waste to Value & CO₂ Emission reduction

Characteristics of wastewater from bagasse WBS yard

S. No	Parameters	Bagasse wash water	Central channel water
1	рН	4.6	3.9
2	VFA meq/L	48	112
3	Color PtCo.	350	540
4	Total solids mg/L	5,283	10,400
5	TDS mg/L	4,283	9,560
6	TSS mg/L	1,000	840
7	COD soluble mg/L	3,651	15,400

Fuel saving and GHG reduction from biogas plant for the year 2021-22

Biogas generation, m ³ /year	95,67,079
Furnace oil saving, kL/year	5,740
Bagasse wash wastewater treated m ³ /year	48,15,750
COD reduced, MT/year	18,261
GHG Emission reduction, MT CO ₂ eq	18,636

Current price of F. Oil is around RS 53,000/kL

Water Sprinkling

Good Compaction Reduced Aerobisity, pH and Aerobic Oxidation

Fibre

- Bagasse: High FPR value & Brightness: high quality
- Pulp: High yield, Strength,
 Optical Properties, Resource
 Efficiency & Cost and Improved
 Quality.
- Environment: Reduced
 Chemical Consumption: Less
 Pollution, Cost and Resource
 Saving

Organic Residues

- Avoids Oxidation &
 Conversion of organics to organic acids: Saving of Biogenic Resources
- Organic Acids to Biogas:
 Renewable Energy
 Generation, F. oil & Cost
 Saving and Reduced GHG
 emission and Climate Change

Questions Answers