N.S. Sadawarte A.K. Prasad

Effect of Permanganate Namber on Pulp Bleachability and Brightness Stability

Most Indian paper mills cook bamboo to a K No. of 20-24; there are some mills, however, cooking to a K. No. of 14-18, especially for bleachable grades.

Table 1 lists the cooking conditions, physical and chemical characteristics of unbleached and bleached bamboo kraft pulps at two levels of permanganate numbers, viz K. Nos 13.5 and 22.0. The former is laboratory cooked pulp and the latter is mill cooked pulp. TAA requirement for the lower K. No. pulp is 25% more; the unbleached pulp yield is 44 5%, compared to 48.8% for the high K No. pulp. Fiber classification (Clark) shows significant differences in the characteristics of the low and high K No. putps. The--125 fraction is about 8% higher in the high K. No. pulp. The organics in the black liquor of the low K. No. pulp are about 5% higher than in the case of the

Shri N. S. Sadawarte : Executive Director

Dr. A. K. Prasad : Technical Manager

The Central Pulp Mills, Ltd. Fort Songad, Dist: Surat (Gujarat)

Ippta, July, Aug. & Sept., 1976 Vo'. XIII No. 3

Research and Experience on the Bleaching of Bamboo Kraft Pulps

The paper gives a detailed account of successful laboratory research and mill trials on the bleaching of bamboo kraft pulps at Central Pulp Mills. The attempts by the mills to continually upgrade their pulp quality, i.e. to produce pulps of good strength and brightness stability are described at length.

Todate, Cental Pulp Mills, popularly known as Cenpulp, are the only organisation in the world manufacturing and offering flash-dried paper grade bamboo kraft pulps-unbleached, semi-bleached and bleached to both the domestic and international markets. This being the case, a lot of laboratory research had to be undertaken to determine the optimum cooking and bleaching conditions to produce pulps of good strength and brightness stability. The laboratory results were subsequently confirmed in mill trials. The present paper gives a brief account of the findings, with particular emphasis on brightness stability.

TABLE 1 :	Cooking Conditions,	Chemical and	Physica	l Properties
	of Unbleached Bambo	o Kraft Pulps	s of Pe	rmanganate
	Numbers 13.5 and 22	.0		

Par	ticulars		Permunganate No. 13:5 (LAB Cook)	Permanganate No. 22.0 (Mill Cook)
	Cooking Conditions		(LAD COOR)	
Я,	Chemicals on OD Chips TAA (As Na ₂ O)	%	20.0	16.0
	Time to Max, temp.	Mir	. 150	150
	Time at Max, temp.		120	90
	Max Temp.	°C	165	160
	Bath ratio (Chips to liquor)	1:2.5	1:2.5
B .	Unbleached Pulp Yield	° %	45.5	48.8
С.	Chemical Properties :			
	Ash	%	2.5	2.7
	1% NaOH solubility	%	6.1	9.0
	Lignin	%	3.9	6.1
	Pentosans	%	15.5	16.8
D.	Fiber Classification (At Ini	tial Fr	eness)	
	(Clark)			
	+ 20 mesh	%	51.5	38. 5
	— 20+ 50 mesh	%	17.3	22.5
	-50+65 mesh	%	7.4	7:5
	-65+125 mesh	%	4.5	4 5
•	—125 mesh	%	19.3	27.0
Έ.	Black Liquor Analysis		• .	
	a) Organics/Inorganics (as	such		
	at 900°C)	%	60/40	54/46
	b) Calorific value	Btu/lb	6340	6090
	c) Free alkali as NaOH	gpl	9.6	6.0
	d) pH		12.2	11.4

high K.No. pulp. The bamboo (Dendrocalamus strictus) chips in the present study have 30% moisture. Chips classification yields 95% acceptable chips (-28 mm to + 4 mm).

Table 2 gives the bleaching conditions as well as the bleached pulp characteristics of the low pulp (K. No. 13.5). K. No. bleached in pulp waś The CEHP and CEHH, CHEH, CEHD sequences. Lowest Pc number as well as highest pulp strength were achieved in CEHD sequence, followed by CEHP, CHEH and CEHH sequences.

The bleaching conditions and the bleached pulp strengths for high K. No. pulp (K. No. 22.0) are given in Table 3.

As noted in Table 2, CEHD pulp had the lowest Pc value and the highest over-all strength. However, at the same brightness level, Pc number is higher for the high K. No. pulp in each bleaching sequence. For instance, in CEHH sequence, 22 K. No. pulp had a Pc number of 8.7 as against a Pc number of 5.9 for 13.5 K. No. pulp.

It can be also seen from the results of Tables 2 and 3 that pulping to a low K. No. results in an effluent of lesser colour, TSS, BOD and COD. For example, in CEHH sequence, BOD_5 values in chlorination, extraction, hypo I and hypo II stages were 37 PPM, 80 PPM, 37 PPM and 10 PPM respectively for the low K. No. pulp, compared to the

corresponding figures of 82.5 PPM, 120 PPM, 58 PPM and 35 PPM respectively for the high K. No. pulp. This means a better effluent quality and lower pollution load to the sewer in low K. No. pulps. It is worth mentioning here that CHEH sequence gave an effluent of the lowest colour.

Effect of Different Chemicals on Pulp Brightness and Colour Reversion

The effect of H_2O_2 , NaHSO₃, HCl, H_2SO_4 and $NaBH_4$ on bleached pulp brightness and reversion is shown in Table 4. Pulps of 76-80 PV (CEHH) brightness were taken in this study. As could be expected, application of H₂O₂, NaHSO₃ and NaBH₄. although expensive, increased pulp brightness and reduced Pc number. It is interesting to note that acidification of the final bleached pulp (CEHH) with HCl or H₂SO₄ 0.10-0.50% on pulp) increased pulp brightness by over 2 points and reduced post colour number by (about 30%.

Effect of Sulfamic Acid in Hypochlorite Bleaching

The beneficial effect of sulfamic acid in hypo bleaching is outlined in Table 5. Bleached pulps produced under the following conditions were compared : 1) No caustic or no sulfamic acid as buffer, (pH not controlled during bleaching) 2) caustic alone used as buffer and 3) sulfamic acid used in place of caustic. Sulfamic acid treated pulp had the highest viscosity. The Pc number of the SA treated pulp is about same as caustic buffered pulp but around 2.0 points lower than that of the unbuffered pulp. The over-all pulp strengths of the sulfamic acid treated and caustic buffered pulps are about the same, both being higher than those of the unbuffered pulp.

A Brief Summary of Miscellaneous Work Done at Cenpulp Research Laboratory on pulp Bleaching.

1. Chlorination Time

For pulps of around 20 K. No., 95% of chlorine added was consumed in 30 min.

2. Effect of % NaOH in Extraction

Increased caustic (in the range of 1 to 4% on pulp) decreases reversion. Around 2.5 % NaOH appears to be the economic optimum.

3. Effect of Extraction Temperature

Extraction temperatures in the range of 40 to 70°C were studied. 60°C was found to be the optimum.

4. Effect of Hypo Addition in Extraction

0.5% and 1.0% hypo as available chlorine were added in the extraction stage. Nothing conclusive resulted in respect to pulp brightness, reversion or strength.

5. Effect of Hydrogen Peroxide in Extraction

The effect of using H_2O_2 in extraction stage in the range of 0.25-1.0% on pulp was

Ippta, July, Aug. & Sept., 1976 Vol. XIII No. 3

					,												
Bleaching Conditions :			··		•		· ••		•								а Сарана С
Bleaching sequence		- E	H	H				E	H	ပ	E	H	Ч	Ű	님	H	9
Chemicals on OD Pulp %	4	0 1.7	5 2.0	0.2	5 4.	0	5 1	S.	1.5	4.0	1.75	2.0	0.3	4.0	1.75	1.5	1.0
Consistency		2 10	10	10		2	0	01	10	6	0	10	10	7	10	10	10
Temperature °C	m	0 60	4	5 45	N.	9.4	5	99	45	30	99	45	70	30	60	45	20
Retention time Min.	÷.	06 0	150	180	Ϋ́,	0 15	0	90	80	30	06	150	120	30	6	150	09
Hd	-	7 10.5		8.0		8 8	5 11	0.	8.5	1.7	0.5	8.0	8.0	1.7	10.5	8.0	4.5
Bleaching losses on OD Pulp				10.2				H	0.0		· •		9.8				9.6
Brightness PV			76	80		S	9		80			73	80	. :		73	82
Post colour Number				5.5	•				4.5				2.5				2.0
Viscosity (0.5% CED) CPS		an Nag	: .	10.2	_			-	1.4		1.	•	12.4		•	,	13.2
Copper number				1.6	0				1.55				1.50				1.45
Carbonyl me/10	0,8			15.8							•		13.2				12.7
Carboxyl "				6.1						Υ. Υ			6.8				7.3
			-			-											
•																	
Effluent Characteristics :				X					ı								
Colour (Pt-Co units)		70 14	00 6	0 10		5 5	8	350	30	80	1400	60	11	70	1400	45	12
Hd	2	.8 10	.5 8.	3.00	6	0	0.0	1.4	8.4	2.8	10.4	∞	10	2.8	10.5	8.3	4.5
Total suspended solids PPM	Ξ	20 1	80 - 10	4 16(<u> </u>	36	152	232	130	124	288	132	200	120	180	104	110
BOD 5 days at 20°C PPM		37	80 3	7 15		38	15	79	8	30	85	30	12	37	80	37	•
								 						· ·	•		
Bleached Pulp Strength Evaluation A	vt 250 m	I CSF				i h				- ,			an th	S.			
) ''																č.	X.,
Initial freeness ml CS			39	.0					720	•			680			a 1997 - S	690
Final freeness ml CS	- 		25	0		. • •			250				250			e De la constante de la constante de la consta	250
Breaking length M			533	5		دي آد ا		а. 	516				6750		ा । 		7180
Burst factor Mullen			47.					ম	9.5	9) }		52.4	- 1			53.1
Tear factor Elm.			112.	1				2	24.5	t y G		i	146.3	¥ 			61.0
Double folds MIT			16	6					190	- - -	аны б -		244	P.) - 4 - 2			347

Ippta, July, Aug. & Sept., 1976 Vol. XIII No. 3

 96 - J

TABLE 2

Bleaching Conditions and Results for Various Sequences (K. No. 13.5) LAB Cook

Table 3 : Bleaching Conditions And Results For Various Sequences (K. No. 22.0) Mill Cook

Dicaching Conditions:																
Bleaching Sequence	С	E	H	н	С	H	F	H	С	Ε	Η	P	C	E	Н	D
Chemicals on OD Pulp %	5 8.0	2.5	3.0	0.5	8.0	2.0	2,5	2.5	8.0	2.5	3.0	1.0	8.0	2.5	2.7	1.0
Temperature °C	27	60	45	45	27	45	60	45	27	60	45	45	26	6 0	45	45
Retention time Mi	n. 30	90	150	180	30	150	90	180	30	90	150	120	30	90	150	120
pH	1.7	11.0	.8.0	8.0	1.7	8.0	10.0	8.0	1.7	11.0	8.0	11.0	1.7	11.0	8.0	5.0
Bleaching losses on OD pul Brightness P Post colour number Viscosity (0.5% CED) C Copper number Carbonyl me/10 Carboxyl	lp V PS 0g		76	15.6 80.5 8.7 8.5 1.65 21.0 6.8		41	42.5	14.9 80.5 7.4 9.3 1.67			76	14.7 81.0 3.9 9.5 1.63 17.1 6.9	. ,		75	14.4 80.0 3.5 9.8 1.64 15.0 7.0
Effluent Characteristics :																
Colour (Pt-Co units)	250	4250	45	15	. 250	900	1900	25	250	4250	40	25	250	4250	45	30
рH	1.8	9.6	8.0	8.3	1.8	11.2	8.0	8.5	1.8	9.2	8,4	10.5	1.8	9.6	8.0	4.6
Total suspended solids BOD 5 days at 20°C PPM	310 82	504 120	576 58	684 35	85 86	425 110	405 43	565 12	452 85	632 130	660 58	480 26	316 82	50 4 120	576 58	125 30
Initial freeness ml CS Final freeness Breaking length M Burst factor M Tear factor El Double folds M	ullen m. IT	e at 2:	5V M1	660 250 5110 42.3 87.1 83			Ş	650 250 5855 44.2 92.7 97	• •	· ·	•••	680 250 6300 43.9 87.1 106				680 250 6410 44.0 106.2 117

Table 4

Effect of Different Reagents on Pulp Brightness And Colour

	Reversion Chemical % on OD pulp	Initial Bright- hess PV	Final Bright- ness PV	Post Colour Number
Permanganate No. 22.0	_	80	80	8.50
	0.1	80	81.5	5.30
H_2O_2	.0.2	80	82.0	4.80
-	0.5	80	83.0	4.30
	1.0	80	83.5	4.00
		79	79	8.10
NaHSO ₃	0.1	79	81	5 .26
	0.5	79	82	4.70
	1.0	79	82	3.94
		76	76	10.50
H ₂ SO ₄	0.5	76	77.5	8.50
•	1.0	76	78.5	7.50
HCl		78	78	14.19
	0.10	78	80	9.50
Sodium Borohydrate				
		76	76	6.60
Permanganate No. 13.5	0.1	76	78	2.30
	0.25	76	80	2.10
		77	7 7	~8 .6 0
Permanganate No. 22.0	0.1	. 7 7	78	4.43
	0.25	77	70	4 20

studied. In low K. No. pulps (less than 15.0), the use of H_2O_2 helped to reduce reversion to a higher extent than in high K. No. pulps. The higher the peroxide percent used, the lower the colour reversion.

6. Effect of White Liquor in Extraction Plant white liquor (2% on pulp) compared favourably with NaOH (at the same level of application) regarding final pulp brightness and reversion. The extracted pulp should, however, be thoroughly washed to prevent carry over of too much sulphide, which could interfere with subsequent hypo bleaching.

7. Effect of CHHEH Sequence This sequence gave a lower post colour numbor than CHEH sequence, but not that

Ippta, July, Aug. & Sept., 1976 Vol. XIII No. 3

						Table	e 5									
Particulars	. 1	Effect	of St	lfam	ic Ac	id in No I	Hyp NaOH	oehlo [rite NaO	Bleac H as	hing buffe	S	ilphai	nic a	cid	
• . • .						NO S	ulpha	-)	No	sulpha	amic		1	No Na	OH	
. a						mic ac		-	-	aci	d.		-	_	,	
NOU an OD Dute				•		\mathbf{H}_1		12	ł	11		H ₂	E	1		H,
				%			•	-	0	.75		0.5		-		
Sulphamic acid on hypo				%		مسده	-		-	-		· ·	4.	0	4	4.0
Hypochlorite as available	chlc	prine		%		2.5	1.	0	2	.5		1.0	2	.5		1.0
Retention time			· N	lin		120	15	0	12	20	1	50	12	0	1	50
Temperature			2	C .		45	4	5	4	5		45	4	5		45
Consistency			0	%	1	10.0	10.	0	10.	.0	1	0.0	10.	0	1	0.0
pH						6.4	6.	2	8.	2	5	3.0	6.	3	. 4	6.0
Brightness			PV			72	80)	7	ļ	• •	79	73	}		\$ 0
Piscosity (1) 5% (CED) CI	20				1	5.0	70	.0	13.3)	* 8 10	.2	12.	9	1	8.1 7 2
V% NaOH solubility			0/				7.0 	5			10	12	-	-	1.	2.5 7 5
lopper Number			/0				1.70	í			1.	62			1	.63
Strength Evaluation															-	
Initial freeness		ml (CS		1	560				-	6	70	•		e	660
Final freeness	÷	ml C	CS.		2	250					2	50			1	250
Teating time		Mi	n.			40						42				42
Breaking length		M.		55	530				•	6270				62	215	
Burst factor		Mullen		52	2.8					55.2				-5	4.3	
Double folds		Elm.		100.4						93.0				100.4		
Double folds		ĮVI			0	33				•	ð	10				40
						Tabl	e 6									
Physical And Chem	ical	Prope	rties	of Di	iffere	nt Pu	lp Gi	ades	Ma	nufac	tured	At C	entr:	il Pul	p Mil	ls
Bleaching Conditions:														دم		
Bleaching sequence	C	• • • • •	н	н	Ċ	Е	н	н	С	Ε	н	н	С	Ē	H	н
Chemicals on OD Pulp %	7.8	2.0	2.5	0.5	8	3.0	2.5	10	8	3.5	3.0	1.0	8	4.0	3.5	1.0
Temperature °C	30	45	35	35	30	50	38	.38	- 30	60	40	40	30	60	40	40
Consistency %	20	10	120	150	20	10	120	150	20	120	120	10	20	120	120	150
pH	1.8	8.9	6.5	75	1.8	10,0	7.5	7.5	1.8	11.2	7.5	7.5	1.8	11.2	7.4	7.5
Brightness PV	~~			55				65				72				80
Chlorine consumption (Un	OD	unble	eache	d pul	p)											
1. In chlorination stage %				7.7				7,9				7.9				7.9
2. In hypo Stage %				2.8				3.3				3.7				4.2
Sulfamic acid ka	/ton			2,0				3.0				3.5				4.0
Caustic as buffer %				0.2				0.4				0.5				0.5
(When Sulfamic acid is not	used)															
Chemical Properties																
Concer Number	-8			16.9				14.0	1			13.0				12.0
Post colour number				20.4				14.6				10,9				8.5
Strength Properties (At 2	50 m	l CSF	')													
Breaking length M			•	6100				6500				5845				5780
Burst factor M	ullen Im			50.2				53.9 146				51.4 136				46.7
Double folds M	ÎÎT.			425				536				326				214
Note:-Cooking Conditio	n s:															

TAA 16% as Na₂O; Time to 105°C—60 min.; Time at 105°C—30 min.; Time from 105°C—160°C—90 min.; Time at 160°C—90 min.; Bath ratio (chips to liquor) 1:2.5 Unbleached pulp yield-48.8%. Permanganate number—22.0.

Ippta, July, Aug.: & Sept., 1976 Vol. XIII No. 3

265

•

much lower to warrant an additional bleaching stage.
8. Effect of Sulfamic Acid on

Colour Reversion

Bleached pulps produced with caustic (as buffer) or sulfamic acid in hypo bleaching had almost identical post colour numbers.

9. CEHDP Sequence

CEH pulp of 76 PV brightness and 11.4 Pc number was bleached with ClO_2 (1.0% on pulp). The resulting pulp had a brightness of 84 PV and Pc. number of 2.3. 1.5% H₂O₂ was then applied on this pulp at 70°C at 15% consistency for 150 min. to give a pulp of PV 87 brightness at a Pc number of 0.55. Following acidification with 1.0% H₂SO₄ on pulp, the pulp brightness was raised to 90 PV.

10. CPHP Sequence

This sequence gave pulps of 80-82 PV brightness at a Pc number of 3.5, but H_2O_2 applied was rather high at 1.5% on pulp.

Mill Bleaching

Unbleached pulp (K. No. around 22) is bleached in CEHH sequence to different levels of pulp brightness. All the towers are of upflow type. Kamyr, Inc. are the suppliers of bleach plant.

The conditions of bleaching for pulps of 55 PV, 65PV, 72PV and 80PV brightness are given in Table 6. It has been repeatedly observed that over-all pulp

strength is the highest for 65Pv brightness pulp in CEHH sequence.

The higher the pulp brightness, the lower the Pc number. For instance, the Post colour numbers of 55PV, 65PV, 72PV and 80PV brightness market pulps were 20.4, 14.6, 10.9 and 8.5 respectively.

Flash drying operation does not increase Pc number, as the pulp drying conditions and subsequent cooling before baling are so controlled to keep the reversion at a minimum. It is found that laboratory air dried and plant flash dried pulps of 80PV brightness have about the same Pc number.

Use of sulfamic acid in hypobleaching has helped to go in for higher temperatures in H_1 and H_2 stages without degrading the fiber, which means increased pulp production rates. Besides, an over-all savings of about Rs5/ ADT bleached pulp is obtained, when sulfamic acid is used in preference to caustic (as buffer) in hypochlorite bleaching.

That lower K. No. pulps give easier bleaching pulps of somewhat higher brightness stability was confirmed in mill experience. However, a production drop of about 20 percent was experienced when bleaching pulps of around 16 K. No., compared to pulps of around 22 K. No. The main difficulty was in handling higher black liquor solids in evaporators and in processing about 25

percent more TAA (white liquor) in the case of lower K. No. pulps

Post colour number of pulp does not necessarily correlate with actual brightness drop in pulp storage. It has been repeatedly found that low Pc number pulps recorded a higher brightness drop during storage at higher relative humidity than did high Pc number pulps at lower relative humidity. Cenpulp experience has also shown that at the same brightness level for the same bleaching sequence, post colour number is about same in both pine and bamboo kraft pulps.

A Brief Description of Mill Trials on the Bleaching of Bamboo Kraft Pulps

- 1. Mill Trial of CHEH Sequence A bleached pulp of slightly better brightness stability and higher pulp. strength and viscosity than in regular CEHH sequence was obtained. The effluent calour in CHEH is much lighter than in CEHH sequence. Laboratory research findings detailed in Tables 2 & 3 are essentially confirmed
- 2. Mill Trial of CEHP Sequence Application of H_2O_2 (1% on pulp) on the fourth stage increased the pulp brightness to 82PV, which on acidification with 0.5% H_2SO_4 (on pulp) gave a pulp of 84PV brightness at Pc No. of 3.0. The CEHH bamboo kraft pulp, for comparision, at 80PV brightness has a Pc No. of around 7.5. Using 1.0%

Ippta, July Aug., & Sept., 1976 Vol. XIII No.3

 H_2O_2 on pulp, however, increases pulp cost by over Rs. 100/ton.

3. Mill Trial Using H₂O₂ at the Screw Conveyer After Thune Press.

Bleached (CEHH) bamboo kraft pulp at 40% consistency was treated with 0.5% H₂O₂ on pulp. The brightness and Pc number of the untreated pulp were 80PV and 7.0 respectively. The brightness and Pc number of the H₂O₂ treated pulp were 81PV and 6.0 respectively.

Actual brightness drops during storage for three months for the untreated and H_2O_2 treated pulps were 2.0PV and 1.5PV respectively. There was no real advantage on using H_2O_2 (0.5% on pulp) here.

Conclusions

1. The lower the K. No. of unbleached pulp, the lower the colour reversion of the bleached pulp. However, at lower K. No., pulp production rate drops in mill practice.

2. CHEH sequence is superior to CEHH sequence, as it yields a pulp of better brightness stability. The control of bleaching in just one H stage after extraction is, however, difficult.

> Also, CHEH sequence gives an effluent of lighter colour than in CHEH sequence.

- 3. Chlorine dioxide and Hydrogen peroxide can be advantagously employed to yield pulps of higher strength and better brightness stability. These chemicals are, however, very expensive.
- 4. Acid wash 0.1% to 0.5% HCl or H_2SO_4 on final bleached pulp) raises pulp brightness by about 2 points.
- 5. Sulfamic acid application results in a bleached pulp of good viscosity; also over-all savings in chen.ical cost in

bleaching are about Rs.5/ADT of bleached pulp.

6. Under controlled bleaching conditions, the higher the pulp brightness the lower the post colour number.

Post colour number is dependent on the relative humidity and temperature of the pulp storage atmosphere.

A high post colour number at lower relative humidity often gives less brightness drop in a pulp than does a low Pc number at highter relative humidity.

Literature Cited

- 1) The bleaching of pulp: Tappi Monograph No. 27.
- 2) Unpublished work of Central Pulp Mills Research Department.

Acknowledgements

To Sarvashri S. J. Shah, K.H. Desai, A.R. Dharwadkar, D.G. Gandhi and K.H. Parekh for skilled experimental work.

lppta, July Aug., & Sept., 1976 Vol. XIII No. 3