A. R. K. Rao G. Srinivasan N. V. S. R. Murthy

The spurt in prices of the essential raw materials for paper making and the Government's restrictions on selling price of the product have necessitated the industrialists to take stern -economic measures in every sphere. The ability to reduce the cost of production of paper is closely connected to the effective process control at every stage of the production of material in question and the economic utilisation of the valuable chemicals like Alum, Glue, Rosin etc. It is with the second aspect of utilising some of the valuable chemicals in the sizing operations, this paper is going to deal with. Despite the fact that the alum solution used in the process is of satisfactory quality, at times its consumption goes much beyond the normal proportion, especially, while producing bleached papers.

This article describes the detailed studies designed and conducted to throw light on the role played by the important factors like pH, Calcium content of the pulp and free rosin in the economic utilisation of alum in sizing operation to reduce the cost of production

A. R. K. Rao, G. Srinivasan, N. V. S. R. Murthy The Audhra Pradesh Paper Mills

Ltd. Rajahmundry A.P.

ssen- Laboratory experiments were conducted to study the role played baper by the important factors like pH, residual calcium salts in pulp pent's and free rosin in the economic utilisation of alum.

Alum In Sizing

Economic Utilisation of

The use of acid-alum blend containing 20% sulfuric acid had been found to be more economical for achieving a particular stock pH than alum alone. Further, the addition of alum-acid blend greatly enhanced the sizing of the hand sheets. However, at low pH (high acidity) its use resulted in deteriorated sizing.

The residual calcium salts in pulp considerably reduced the sizing due to formation of insoluble soaps. These resinates consumed 50-60% of the theoretical alum. By washing the pulp with hot water at $50-60^{\circ}C$, the calcium content could be reduced considerably.

A steady increase in sizing value was abserved for both unbleached stocks as the pH was gradually reduced upto 5.5 at which the sizing attained its peak value. Of the three free rosin sizes used in sizing experiments, viz., low (4 26%), medinm (18.25%) and high (32.55%), medium free rosin size resulted in better sizing for both unbleached and bleached varieties.

of paper without sacrificing the quality.

Theory of Rosin Sizing

Though there are several theories regarding the role of paper maker's alum, $Al_2(SO_4)_3$, 18 H₂O in sizing, it is quite well established that it plays a dominant role. According to the Ostwald and Lorenz Electro Static Theory¹ alumina is an electro cement adhering rosin to negetive charged fibres. Price et. al.² established that the alum reacts with sodium resinate in aqueous media, in the absence of free salts, to form equimolar mixture of basic aluminum di-resinate and free rosin acids. This basic aluminum di-resinate, ionizes to aluminum resinate. Al Re S_2+ , as the pH decreases below 7.5. This ion facilitates the retention of size precipitate on the pulp by electrostatic attraction between preferentially adsorbed hydroxyl and sulfate ions on the fibres and this positive ion. The convalent nature of the aluminum resinate bonds enhances the hydrophobicity of rosin and thereby promotes sizing³ after drying.

Experimental

Process water was used in sizing experiments and in the preparation of solutions used in the

Ippta Jan., Feb. & March, 1976, Vol.XIII No. 1

titration. Paper Maker's alum, supplied by Dharamsi Morarji Chemicals, containing 17% Al₂O₃ and no free acid was used in these experiments. Other Inorganic Chemicals, such as Sulphuric Acid, Calcium Carbonate used in the experiments were of Analar Grade. Rosin soaps were prepared in the Laboratory from N wood rosin which had an acid no. of 165.

Sizing Studies

The pulp was beaten in a valleybeater, at 1.5% consistency to a SchopperRiegler freeness of 40°. In each batch of sizing experiments, 10.0 grams of O.D. beaten pulp was first diluted to 2 litres and properly slushed in the pulp-disintegrator. The requisite quantity of rosin (0.5% and) 1.0%) was added to the pulp and sufficiently mixed and finally the alum solution was run in to the stock to obtain the desired pH value. The volume of the alum solution consumed was recorded. Sheets of 65 and/or 135 gsm were made on a British Standard Sheet Maker which had a provisionfor back-water circulation: The backwater pH, corresponding to the pH of the stock, was maintained by the addition of sulfuric acid.

To establish the effect of adding sulfuric acid to alum solution to achieve a particular pH of stock instead of using alum solution alone, two different solutions were prepared by adding 10% and 20% of sulfuric acid on total weight of alum.

To elucidate the reduction of alum consumption by using small quantities of sulphuric acid, these solutions were added to different portions of the same pulp and the quantities required to attain a particular pH were measured. Sheets prepared with these pulps were tested for sizing (4). These experiments were conducted at various pH values between 4 and 6. The results pertaining to the relative consumption of sulphuric acid treated alum and the sizing of the sheets are presented in Table I and Figure 1.

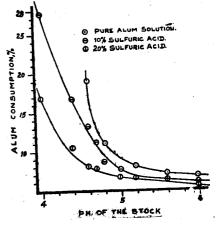


Fig: 1 Effect of Sulfurie Acid Addition on Alum Economy

Effect of the Presence of Calciumions on alum Consumption :

To evaluate the contribution of the Calcium content of the bleached pulp in increasing the alum consumption and in decreasing the sizing, sheets were

Table I

Effect of	using	Sulfuric	Acid or	ı Alum	Consumpti	on and Sizing
-----------	-------	----------	---------	--------	-----------	---------------

SI No	ALUM S Alum 5. consump- tion %	pH of the	G.S.M.	SUCH Sizing in sec- onds	10% SULFU Alum consump- tion %	RIC ACI pH of the stock	D ADDED G.S.M. of hand sheet	TO ALUM Sizing in sec- onds	20% SUI Alum consump- tion %	ALUN pH of		DED TO Sizing in Se- conds
1. 2, 3. 4. 5. 6. 7. 8. 9. 10,	6.8 7.2 8.0 11.0 19.0 —	6.0 5.6 5.2 4.8 4,6 	54 54 55 55 55 	8 12 10 8 7 — —	5.83 6.38 7.59 8.58 11.22 13,20 16.72 27,60	6.0 5.6 5.0 4.8 4.7 4.6 4.4 4.0	5 4 54 54.5 54.5 54.5 54 54 54	17 19 15 12 9 7 6 —	5.64 6.24 6.36 6.48 6.60 7.20 7.68 8.04 10 4 4 16.8 0	6.0 5.6 5.4 5.2 5.0 4.8 4.7 4.6 4.4 4.0	54 55 54 54 54 54 54 54 53 53	20 29 21 15 14 13 11 9 8 3
M	F. Refined dition: 0.36 alp as CaCo	i% Cal	cium con	Rosin atent in					Alum sulf	uric Ac pH:2.1 Suric A Alum)		$0\% H_2S_{O4}$

Ippta Jan., Feb. & March, 1976 Vol. XIII No. 1

prepared with various pulps containing different amounts of Calcium Carbonate at the same pH value and were tested for sizing.

The results are presented in Table II and Figure 2.

To determine the role played by the pH in alum consumption in the presence of Calcium ions, sizing experiments were also conducted with two pulp samples having different calcium content at various pH levels between 4.3 and 6. Results of these experi-

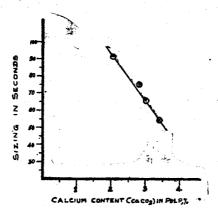
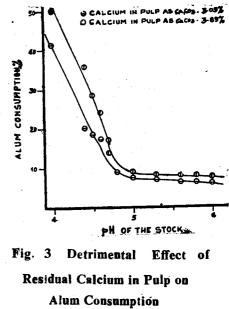



Fig. 2 Detrimental Effect of Calcium on Sizing

mests are given in Tables II & IV and Figure 3.

Sizing experiments were also conducted with the sludge-free Hypo Chlorite Solution and sludge-laden bleach liquor on two different portions of the pulp under identical conditions to find out if the turbid hypo is the

Table II Detrimental effect of Calcium Carbonate addition on Sizing (Figure-2)

Serial	. Particulars		Pulp as	such		
No.	-		1	2	- 3	4
1.	pH of bleached pulp		7.7	7.7	7:7	7.7
2. a) b)	Calcium in pulp as CaCo ₃ , Calcium Carbonate added.	%	2.04	2.80	3.00	3.40
	(on O.D. Pulp basis).	%		0.76	0.96	1.36
3. 4.	Rosin added	%	1.0	1.0	1.0	1.0
4.	pH of the pulp after rosin					
-	addition.	%	8,2	8.3	8.3	8.3
5. 6.	Alum Consumption	%	7.84	11.20	14.00	17.36
6.	Final Stock pH after alum	/•				
_	addition.	%	4.7	4.7	4.7	4.7
7. 8.	G.S.M. of hand sheet		110	110	109	110
8.	Sizing of the hand sheet in s	econds	91	75	65	54

Table III

Detrimental effect of Calcium Carbonate addition on Alum consumption and Sizing at various pH of the stock

	Bleached	Pulp I		·		Bleache	d Pulp II		
SI. No.	Alum consump- tion %	pH of the stock	G.S.M. of hand sheet	Siziog in seconds	SI. No.	Alum consump- tion %	pH of the stock	G.S.M. of hand sheet	Sizin; in secon s
1.	2.28	6.0	129	102	1.	7.92	6.0	128	49
2.	3.00	5.8	131	140	2.	8.16	5.8	131	10 2
3.	3.12	5.7	131	145	3	8,40	5.7	131	107
4:	3.24	5.6	131	155	4	8.64	5.6	129	110
5.	3.42	5.5	128	168	5.	8,88	5.5	131	1.0
6.	3.72	5.2	132	154	6.	9.36	5,2	129	81
7.	3.84	5.0	132	150	7.	12.60	5.0	129	: 4
8.	4.08	4.7	132	124	8.	18.0	4.7	131	78
9.	4.20	4.5	129	110	9.	24.0	4.3	130	74
	Calcium	content in Pulj	p as CaCos, 1	.42%		Calcium	content in	Pulp as CaC	Co ₃ :2. 5%
	Alum sol	ded to Pulp : ution: pH: 1 ulsion pH: 9	.9; TW•:12.0)		Alum so	lded to Pulp: lution: pH: 1 rocess water :	.9 TWº: 12.0	

Ippta Jan., Feb. & March 1976Vol. XI I No. 1

74

pH of process water ; 6.5

Table—IV

	Refined	Bleached	Pulp-I		Re	fined Bleache	ed Pulp-II	
SI. No.	Alum consump- tion %	pH of the stock	GSM of Hand sheet	Sizing in Seconds	Alum consump- tion %	pH of the stock	GSM of Hand sheet	Sizing in Seconds
1. 2, 3. 4, 5. 6. 7. 8. 9. 10. 11.	7.5 7.8 7.9 8.1 8.9 9.7 16.8 24.0 28.5 35.7 50.0	6.0 5.8 5.6 5.3 5.0 4.8 4.7 4.6 4.5 4.4 4.0	54 55 54 56 58.5 55 56 55 55 55 55	12 13 20 13 13 10 10 9 8 7 4	5.7 6.0 6.2 6.9 7.2 8.8 13.6 17.2 18.3 20.1 41.2	6.0 5.8 5.6 5.3 5.0 4.8 4.7 4.6 4.5 4.4 4.0	60 60 59 59 59 59 59 60 60 60 59 58	13 15 23 19 18 16 15 14 12 10 4
	Calcium cou as CaCO ₃ 9 Alum (20% l Rosin addit	% : 3.89 H ₂ SO ₄) solu nH	otion : :1.9 TW°:11.5		as CaCO ₃	6 H ₂ SO ₄) solu pH:	1.9 TW°:11,5	•

Deterimental Effect of Residual Calcium Salts in Pulp on Alum Consumption

Table V

Role of pH on Sizing (Figures 4 & 5)

S I. No.	Alum con- sum- ption %	pH of the stock	pH of the back- water	G.S M. of hand sheet	Sizing in seconds	Alum con- sum- ption %	pH of the stock	pH of back- water	G.S.M. of hand sheet	Sizing in , seconds
	0.50			•						
1.	2.73	6.0	6.1	60	12	2.82	6.0	6.0	179	102
2.	3.05	5.8	5.8	59	15	3.00	5.8	5.8	131	140
· 3.	3.12	5.6	5.6	60	21	3.12	5.7	5.7	132	145
4.	3.20	5.5	5.5	60	21 26	3.24	5.6	5.6	132	155
5.	3.25	5.4	5.4	62	24	3.42	5.5	5.5	129	158
б.	3.32	5.0	5.0	62	22	3.54	5.4	5.3	129	
7.	3.77	4.8	4.8	65	23	3.72		5.2		160
8,	4.16	4.6	4.6	63	20		5.2		132	154
9.				05	20	3.84	5.0	4.95	133	150
10.			-			4.08	4.7	4.7	134	124
10.					, 	4.20	4.5	4.6	129	110

pH of process water : 6.4 Rosin addition : 0.5% pH of Alum solution: 0.9

Calcium content in bleached pulp as CaCo₃, % 1.42

Ippta Jan., Feb & March, 1976 Vol. XIII No. 1

source of Calcium ions responsible for higher alum consumption and deteriorated sizing. Corresponding results are given in Table VII. With a hope that washing of bleached pulp with hot water would reduce calcium experiments were content, carried out with bleached pulp whose from Hypo-washer, calcicum content is known in the following way.

About 30 grams of O.D. pulp was taken and washed with 60°C. under hot water at suction. The washed pulp was three different divided into portions. With the first portion, the sizing studies were done after finding out the residual calcium content as calcium carbonate. The initial pH of the 2nd and 3rd pulp portions was raised to 8.8 by adding caustic solution (140 GPL) and burntlime (Kiln lime of purity of 70%) respectively to study the contrasting effect of high initial pH which is due to presence of calcium ions and other ions.

Further, the effect of free rosin was alum consumption on studied with bleached and unbleached kraft pulps using different rosin sizes containing 4.26%, 18.25% and 32.55% free rosin at various pH levels. For these studies requisite amount of alkali was taken in a stainless steel vessel and was melted with water minimum amount of (about 150 ml, at 90°C. To this molten alkali powdered rosin was added, while agitating mech-The contents were anically.

kept under agitation for 3 hours at 90°C to allow proper saponification. The total solids of the rosin soap were estimated and the free rosin content was determined using extractive method (with ether) as suggested in TAAPI Standard (5) The results are given in Table V to X.

Results and Discussion

From the results presented in Table I and Figure 1, it can be observed that the alum consumption for attaining the same pH decreases proportionately with addition of sulphuric acid to the solution.

Further, the improvement in sizing is observed with the use of sulphuric acid at the same pH of the stock as evident from the results given in Table I. The increase in sizing value due to the blending of sulphuric acid with the alum solution may be attributed to the availability of more SO_4 —ions resulting from the increased dissociation of alum in addition to SO_4 —ions from sulphuric acid (6). However, building up of too many SO_4 ions (high acidity at low pH) in

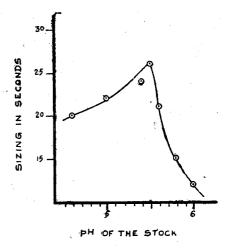


Fig. 4 Effect of pH on Sizing (Unbleached Pulp)

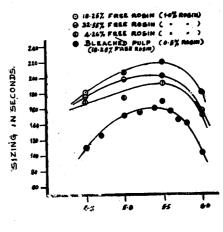


Fig. 5 Effect of pH of the Stock on Sizing

Table VI Analysis Calcium Hypo-Chlorite Sludge

SI. No	Particulars	Ι	11	III	IV
1.	Clarity of Calcium Hypo chlorite solution	Very Turbid	Turbid	Slightly Turbid	Slightly Turbid
2.	Sludge present in Hypo solution (p.p.m.)	2 010	1910	89.0	112.0
3. a) b) c) d) e)	Analysis of Sludge : Loss on Ignition Calcium as MgCo ₃ , % Magnesium as MgCo ₃ , % Free calcuium oxide % Chloride as CaCl ₂ , %	33.20 73 60 5.06 3.80 1.25	29.60 79.00 6.75 2.50 1.11		

Ippta Jan., Feb. & March 1976 Vol. XIII No.1

SI. No;	Particulars		1*	2**	1*	2**	1*	2**
1.	Clarity of Calcium Hypo-Cl Sc	hlorite olution	Clear	Turbid	Clear	Turbid	Clear	Slightly Turbid
	Sludge Bleaching of Alkali Washer	ppm Pulp		1910		890		112
	Hypo added as available Chlorine	%	5.0 8 . 5-9.5	5.0 8.5-9.5	5.0 8.5-9.5	5.0 8 .5-9.5	5.0 8.5-9 .5	5.0 8.5-9.5
(c)	pH maintained Buffer added as NaOH, Retention time at 40°C	% (mts)	1.2 105	1.2 105	1.15	1.15	1.2	1.2 105
(e)	Brightness of bleached pulp	%G.E	70.0	68.5 1.936	70.2	68.0 1.59	67 0 1.6	66.0 1.69
(g)	Post color number Calcium in pulp as CaCO ₃ ,	%	2.22	2.48	1.76	2.14	2.02	2.19
(a)	Sizing Studies on bleached pH of the bleached pulp	l pulp	7.8	7.9	- 8.0	8.1	7.8	7.9
(c)	Rosin added, pH of the pulp after rosin ad	ldition	0.5 3.4	0.5 8.4	0.5 8.4	0.5 8.4	0.5 8.4	0.5 8.4
(e)	Alum consumption, Final pH of the stock	%	10.0 4.7	11.5 4.7	8.4 4.7	9.6 4.7	9.0 4.7	9.9 4.7
	GSM of hand sheet Sizing of the hand sheets in	n Secs.	55 14	59.5 15	59.5 17.0	59.5 14		·

Table-VII

Effect of Turbidi	y of Hypo-Chlorite	Solution on Alum	Consumption and Sizing
-------------------	--------------------	------------------	------------------------

Note :--1* Bleaching of Alkali washer pulp with sludge free Hypo. 2** Bleaching of Alkali washer pulp with sludge-laden Hypo.

Table V	/111
---------	------

Effect of Washing of Pulp And of High Initial Stock pH on Alum Consumption

SI.	Particulars			I Set			II S	et		I	II Set		
No	· · ·	1*	2*	3*	4*	1*	2*	3*	4*	1*	2*	3*	4*
1.	pH of the bleached		•										
	pulp	7.5	7.5			7.9	7.8	-		8.0	8.0	—	<u></u>
2.	Calcium content in									1 (0	0.00		
-	pulp as CaCO ₃	1.54	0.7		1.80	1.76	0.87		1.82	1.68	0.89		1.60
3.	Alkali as NaOH												
	required to raise			0.00				0.148		•	_	0.148	
. "	the pH to $8.8,\%$, 	0.28			_	0.140		-		0.140	
4	Lime (70% ava. CaO) added to raise		·		1.12				1.00			_	0.90
	the pH to 8.8 ,%				1.12								0.70
-5.	Rosin added,%	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	pH of pulp after	•••											
	rosin addition	8.4	8.4	8.8	8.8	8.4	8.4	8.8	8.8	8.2	8.2	8.7	8.8
7:	Alum consum-						2.1						
	ption, %	8.7	7.8	8.0	10.5		8.0	8:5	12.0	9.0	7.0	7.5	9.0
	Final pH of pulp	4.4	4.4	4.4	4. 4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
9.	GSM of Hand-			*** *	<i>c</i> 0	<u> </u>	<i>(</i> 0	<u>(</u>)	<u> </u>	(0	60	4 0	60
••	sheet	53	59.5	59.5	60	60	60	60	60	60	60	60	60
10.	Sizing of Hand	14	22	20	22	75	22	21	25	25	34	30	24
	sheet in Seconds	14	32	30	23	25	33	31	25	25	<u> </u>		

1* Bleached pulp from Hypo washer (as such).
2* Bleached pulp washed with hot water at 60°C.
3* Pulp after washing with hot water at 60°C treated with NaOH to 8.8 pH
4* Pulp after washing with hot water at 60°C, treated with lime to pH 8.8.

Ippta Jan., Feb, & March 1976 Vol. XIII No. 1

Table IX

Effect of Free Rosin on Alum Consumption And Sizing (Bleached Pulp)*

	Sering Sering	s.		-		×.
=	N N N					32.55
32.33% Free Rosin	D 1.(Alum pH (added of back water					Free Rosi a in Rosin size : 32.55% on 72.41% Total Solids, pH of Rösin Emulsion : 8.7 Total solids : 22.gpl
NH %	Alum pF added of back wat					Rosii Rosii Amuls 22.gpl
22.22	0.5% Rosin GSM Siz- A ing a in Se-	i ≁ ₽ ∘	- P	€0°€	4 %	si n in % To 0sin I lids :
	Alum pH GSM Siz- added of GSM Siz- back in water Se-	139	19 141	141	142 142	Free Rosi n in Rosin on 72.41% Total Soi pH of Rösin Emulsi Total solids : 22.gpl
	sin Alum pH added of % back water	6.0 6.0	5.5	5.1	4.5	F ng the second
	Alu adde %	6.63	8.19	12.74	27.30	
(Y)	1.0% Rosin ing ad in Siz-Al in Siz-Al	0.00	14 <u>6</u> 1	37 183	33 177	
: r	GSN	70 138	69 138	70 139	70 139	
B	pH of back water	6.0	5.5	5.0	4 4 S S	8.259
TISON 201.1 0/ (7101	U.2% Kosin Alum pH GSM Siz Alum pH added of ing added of % back in % bac water Se- wat	0 .00	7.22	9.80	13.3	Free rosin in Rosin Size: 18.25% on 81% Total solids. pH of Rosin emulsion : 8,5 pH of Alum solution : 0,9
101	ing a	1	28	15 141	132	kosin { solids nulsic
	GSM	70	70 139	69 139	69 1	n in R Fotal Ssin er um so
0 40/ D	Alum pH added of back water	6.0 6.0	5.5	5.0	4.4 5.5	e rosi 81% of Ro
		6.00	12	6 80	13,3	P B B H
	GSM Siz- GSM Siz- ing Secs	=6	17 108	15 67	=8	
1 00/ Bosin	0	69 140	141	140	72 141	
		6.0	5.0	5.0	4.5 8.5	
	Alum added b w w	5.20	6.00	6.50	10.53	: 4.26% :4
N	Siz- ing in Secs.	64	86 5	3.5	6.4	n Size lids. pH : 8 ion: 0
	GSM Siz- ing ing Sec	£3	142	70 140	69 142	Rosi tal sc tion : solut
1 vein	A lum pH added of % back water	6.1 6.0	5.5	5.0	44 N 0	ssin in % Tc Blum Alum
0.50/ # 0610	Alun Alun adde			6.50	10.53	Free rosin in Rosin Size : 4 on 72.0% Total solids. Rosin Emulsion : pH : 8.4 pH of Alum solution: 0.9
10	PH of the stock	6.0 5.20	5.5 6.00	5.0	4.5 10.53	
	S. S.	(<u>)</u>	~ @ @	(j) (j) (j)	≁ .@€	

Ippta Jan., Feb. & March, 1976 Vol. XIII No. 1

Effect of Free Rosin on Alum Consumption and Sizing (Unbleached Pulp) Table X

.

	Sizing in sec.	24 156 197 197 174	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.0% Rosin	. M. 2.Ð	65 135 135 65 65 65 135	2,55
32.55% FREE ROSIN 0.5% Rosin 1.0%	pH of back	6.0 5.4 5.5 1 5.5 1 5.0 1 4.6 4.5	ze: 3
	% bebbs m ulA	5.20 6.50 7.02 8.45 8.45	sin Size olids H· 2 7
	Sizing in Sec.	1170 1170 1145 1145 1145 1145 1145 1145 1145 114	Free Rosin in Rosin on 72.41% Total solid Rosin Emulsion: aH-
	. M. 2.Ð	65 135 65 65 139 139 139 139	sin i % To sin
32.1 0.5%	pH of back water	6.1 6.1 6.0 5.5 5.5 5.5 7.1 4.6 4.5	Free Rosin in Rosin Size: 32,55% on 72.41% Total solids
	% bəbba mulA	5.20 5.20 6.50 1.02 8.45	E O B
18.25% FREE ROSIN 1.0% Rosin	.osz ni galzie	55 35 55 35 132 179 132 179 34 220 35 206 35 206 9 32 135 180	
	. M. 2.D	65 64 65 66 69 135 135 135	*
	pH of back water	6.0 6.0 5.5 4.5 4.5	18.25
% FR	% bəbbs mulA	5.5 5.5 6.60 6.60 7.28 5 8.85 5	ize:
18.25	Sizing in sec.	117 - 1163 - 1163 - 1163 - 1163 - 1163 - 1163 - 1163 - 1166 - 1196 - 1192 - 119	Free Rosin in Rosin Size: 18.25% on 81.0% Total solids Boein Hamileion: AH 8.5
sin	G.S.M.	67 67 64 64 65 65 135 135	Free Rosin in Rosin S on 81.0% Total solids Bosin Emulsion: AH
0 5% Kosi	pH of back water	6.2 6.0 5.0 4.6 4.6	Free Rosin in Rosin ? on 81.0% Total solids Rosin Emulsion, pH
0	% babbs mulA	5.5 6.60 7.28 8.85	ree R 1 81.(
	.398 al gaizie	26 151 151 191 191 173 173 168	E S B
	G.S.M.	65 65 65 65 1139 1139 1132 1139	
EF ROSIN 1.0% Rosin	pH of back water	6.0 6.0 6.0 6.0 7.5 7.6 7.6 7.6 7.6 7.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
REF ROSIN 1.0% Rosin	% р өррв mui А	5.85 6.60 6.60	: 4.26%
	sbaoces ni gaizi2	5 4 4 5 54 6 20 6 141 141 112 112 112 112 112 105	Size 8 4
4.25% Kosin	G.S.M.	66 66 135 : 135 : 135 : 135 : 135 : 135 : 139 : 139 :	solid solid
5%	pH of back water	6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	l in R Fotal Ision
0	% bəbba mulA	5.85 5.85 6.63 6.63 14.69 14.69	Rosin .0% J Emu
	Stock PH of the Pulp	6.0 9 7 9 7 1 1 7 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Free Rosin in Rosin Size on 72.0% Total solids Bosin Emulsion, pH 8
	•N 'IS		- • -

Ippta Jan, Feb. & March, 1976 Vol. XIII No. 1

79

pH of Alum solution: 0.9

Total solids: 22 gpl.

Rosin Emulsion: pH 8.5 pH of Alum solution: 0.9 the closed white water system results in deteriorated sizing, This may be due to the undesirable increase of acid concentration beyond certain limits which reduces the number of positively charged Alum+++ions which are required to form aluminum resinate (Al Re S₂+) for better sizing (7).

It may also be noticed from the results that the best sizing is attained in the region of pH of 5.6.

From the data furnished in Table V it may be noticed that the pH of the stock seems to have a dominant role in sizing of the final sheets, Α steady increase in sizing value is observed for both unbleached and bleached hand sheets as the pH is gradually reduced upto 5.5, which the at sizing value attained its peak. No improvement in sizing value is obtained by further lowering the pH of the stock below 5.5 (8). Instead, a drop is observed as shown in Figures 4 & 5. Further, a close examination of the data reveals that better sizing is obtained. with unbleached pulp, in which the water solubles are retained to a greater extent (3). (Water solubles in unbleached kraft pulp). This is 9% as compared to 3.89% in bleached kraft pulp). This is in agreement with the findings of E.J. Vandenberg et. al.

Deterimental Effect of Calcium ion on Alum Consumption and Sizing :

The results presented in Tables

III & IV pertain to the detrimental effect of the presence of Calcium ion in bleached pulp on alum consumption and sizing. The alum requirement to obtain a particular pH increased with increase in Calcium ion concen-Below pH 5.0 tration. the increase in alum consumption is very sharp. This can be evidenced from the titration curves presented in Figure 3, for bleached pulps having high Calcium content.

From the results given in Table VIII, it may be observed that the pulp from alkali washer, when bleached with sludge laden hypo retains more Calcium than that of the portion, bleached with sludge free hypo. The presence of more calcium in bleached pulp not only promotes colour reversion as indicated by post colour number (9) but also increases alum consumption to obtain a particular pH and affects sizing adversely.

The experimental results in Table VIII show that by washing the pulp with hot water at $50,60^{\circ}$ C, the calcium content (as CaCO₃) can be reduced by 50 to 60% and the corresponding alum consumption will be reduced. Further, raising the pH to 8.8 by caustic additon had not increased the alum consumption considerably, while excess of CaO added to raise the pH to 8.8 had not only increased the alum consumption but also caused poor sizing.

From these results, it may be inferred that the calcium which

might be remaining with the bleached with Calcium pulp Hypochlorite, considerably reduces the sizing by its reaction with free-rosin to form, insoluble Calcium or magnesium resinates¹⁰. These resinates, because of their high negative mobilities, react rapidly with alum to form a positively charged aluminum resinate. In this process, both Calcium and Magnesium colloids consume 50-70% of theoretical alum and hence result in higher consumption³. According to E.J. Vandenberg,³ the initial pH of the Calcium and Magnesium sols is higher than that of ordinary sodium resinate which may be responsible for higher alum consumption.

The Effect of Free-Rosin on Sizing :

The data presented in Tables IX & X refer to the effect of low and high free-rosin on the alum sizing of and consumption bleached unbleached and varieties. It is found that the use of low free-rosin size (4.26%) had resulted in considerable saving of alum in the case of bleached pulp, while high freerosin size (32.55%) had resulted better sizing less and ín consumption of alum for unpulp¹¹. From the bleached Tables IX & X, it is evident that a medium free-rosin size (18 - 2.3%)results in better sizing for both unbleached and bleached varieties of pulp. However, the free-rosin should

Ippta Jan., Feb. & March 1976 Vol. XIII No. 1

not be higher than 40% (extractive method) as it results in coagulation during dilution which may start causing rosin spots in the finished paper¹³.

Further, it has been noticed that the alum consumption to attain a particular pH remains independent of the quality of rosin added in the range of 0.5 to 1.0% on O.D. Pulp.

Conclusions :

1. With the addition of acidalum blend containing 20% H_aSO_4 in place of alum solution, the lowering of pH is more effective than what can be obtained with alum laone. The addition of acid-alum blend enhances the sizing of the hand sheets. However, in a closed white water system, the high acidity of white water, due to the build up of too many sulfate ions, adversely affects sizing of paper as well as the wire-life.

2. When the calcium content of pulp is more than 1.5% the alum consumption increases beyond normal proportions and sizing is adversely affected. The alum consumption increases abnormally below a pH of 4.8. Hence maintenance of the pH of the bleached (high calcium content) pulp below 4.8 is not economical. 3. By washing bleached pulp with hot water at 50-60°C, the calcium content can be reduced to 50 to 60%, which results in considerable saving of alum solution. However, too much

washing of the pulp should be avoided, as it removes water solubles from the pulp, causing reverse effect on sizing.

4. High initial pH of properly washed pulp does not seem to have pronounced effect on alum consumption, unless it is caused due to the presence of calcium ions, which has an adverse effect on sizing.

5. The control of the pH of the paper making stock between 5.0-5.5 is proved beyond doubt to be the most deflective range for best sizing.

6. While printing papers (using bleached pulp) may be advantageously sized with low freerosin size (to the extent of 4-8%). The wrapping papers (using unbleached pulp) which require a high resistance to water absorption may be economically sized with high free-rosin (18-23%) size.

Acknowledgement :

The authors are grateful to the Management of The Andhra Pradesh Paper Mills Ltd., Rajahmundry, for allowing them to publish this article. Further, the authors are thankful to Shri J. G. Patil, works Manager and Shri M.P. Maheshwari, Dy. works Manager, for their valuable pieces of advices and constant encouragement.

Literature Cited :

 W. Ostwald, And R. Lorenz., Kolloid-z, Vol-32, P. 119-137 and 195-209 (1923).

- 2. Price, D., Anal Chem., Vol-20 P. 444 (1948).
- 3. E.J. Vandenberg et. al., Tappi, Vol-50 No. 5 (May, 1967).
- 4. Julius Grant, "A Laboratory Hand book of Pulp And Paper Manufacture", P. 321, edition, (1161), Edward Arnold (Publishers) Ltd., London.
- 5. Tappi Standard Methods, "Analysis of Rosin Size", T-628 ts-53.
- James P. Casey., "Pulp And Paper Chemistry and Chemical Technology", Vol-II, P. 1059 and 1061, Third Printing (1967), Interscience Publishers, Inc., New York.
- 7. T.P. Bhargava and V.R. Vastrad". "Report on Rosin Sizing" (Private Communication from Research Centre of West Coast Paper Mills Ltd., Dandeli.)
- 8. James P. Casey, "Pulp And Paper Chemistry and Chemical Technology", Vol-II, P. 1072, Third Printing (1967), Inter Science Publishers, Inc., New York.
- 9 Tappi Monograph--27., "Bleaching of Pulp", P. 227 and 287 to 289.
- 10. James P. Casey., "Pulp and Paper Chemistry and Chemi-

Ippta Jan., Feb. & March 1976 Vol. XIII No. 1

cal Technology", Vol-11, P. 1069 and 1073 Third Printing (1967). Inter Science Publishers, Inc., New York.

11. James P. Casey, "Pulp And

Paper Chemistry and Chemical Technology", Vol-II P. 1047 Third Printing (1967) Inter Science Publishers, Inc., New York. 12. C. Earl Libby., "Pulp And Paper Science And Technology" Vol-1I (Paper, P.50, McGraw-Hill Book Company. (1961).

Ippta Jan., Feb. & March, 1976, Vol.XIII No. 1