N.S. Sadawarte A.K. Prasad S.J. Shah K.H. Desai A.R. Dharwadkar K.H. Parekh

Introduction :

Packaging papers occupy an important place in industrial economy. The rate of consumption of packaging papers in a country parallels its rate of industrial development. In 1972-74, the production of packaging papers/boards was around 325,000 tonnes, constituting roughly 40% of the total production of paper and board in the country. The planning commission estimates on the demand of Industrial papers (kraft and brown wrappers. paper-boards and others) towards the end of fifth, sixth and seventh five year plans are: 587.000 tonnes (1978-79),

Shri N.S. Sadawarte, Works Director.

Dr. A.K. Prasad, Technical Manager.

Sarvashri S.J. Shah, K.H. Desai, A.R. Dharwadkar

K.H. Parekh, Technical Department, The Central Pulp Mills, Ltd., Fort Songadh, Dist. Surat. Gujrat.

1

Characteristics of Packaging Papers From Commonly Used Cellulose Raw Materials in Indian Paper Industry

Bamboo, pine, eucalyptus, kenaf, baggasse rice straw, gunny rags. and kraft waste paper are the raw materials studied in the present investigation. Indian market kraft papers are compared with European fluting medium and American linerboard and fluting medium.

Paper as a packaging material is contrasted with plastics and wood.

840,000 tonnes (1983-84) and 1250.000 tonnes (1988-89) respectively.

Paper based materials account for over 45% of all the packaging materials. Packaging industry uses paper/board in the form of (a) Bags (b) wrappers (c) Sealing tapes (d) Boxes (e) Drums and tubes and (f) Cushioning materials. For example, paper based products are employed in packaging (i) milk and milk products (ii) preserved fruits and vegetables (iii) biscuits (iv) tea and coffee (v) pharmaceuticals (vi) rubber and rubber goods (vii) textiles (viii) paint and varnishes (ix) batteries bicycle and (X) automobile spares (xi) defence stores, to name a few applications. Light weight, easy disposability (for lamination, printing, etc.) nonreactivity towards the material packed, cheap cost, ease of

packing and transport are some of the factors governing the increased use of paper based products for packaging¹

Fibrous Raw Materials

Wood (soft-wood and hardwood) bamboo, straw (wheat and rice), rags and cotton linters, bagasse and secondary fibre (recycled or waste paper) are among the predominantly used cellulosic raw materials in the manufacture of packaging papers. Due to differences in fiber morphology, composition and distribution of cellulose, hemicellulose and lignin in the cell wall and depending on the pulping process, etc., pulps of different characteristics result from different fibrous raw materials.

Bamboo, rice straw, pine, eucalyptus, gunny rags, bagasse, kenaf and kraft waste paper are studied in the present

Ippta Jan., Feb: & March, 1976 Vol, XIII No. 1

investigation. The cooking details and pulp yields are listed in Table 1. The cooking parameters are so chosen as to yield pulps suitable for kraft papers, viz corrugating medium and liner board.

Table 2 gives the strength properties of pulps at 250 ml CSF (60 gsm handsheets). Pine kraft pulp shows the highest overall strength : breaking length 7.80 Km, burst factor 56.9, tear factor 201 and double folds (MIT) 428. It is interesting to note that kraft pulp of kenaf (*Hibiscus sabdariffa*) gave the highest breaking length (8.57 KM.) and double folds (654) recorded in the present study, but the tear factor at 80 is much lower than the corresponding values for pine (TF 201) and bamboo kraft pulps (TF 103). Rice straw pulps exhibited the lowest over-all strength, followed by whole bagasse soda pulp; the strengths of these pulps could be improved, however, on further delignification but at the cost of drop in yield.

Table 3 records the strength properties of pulps at 450 ml CSF for 120 gsm handsheets, the freeness and gram weight so chosen as to correspond to the the manufacturing conditions of liner board and corrugating medipractice. The um in actual phenomenon noticed in Table 2 for 60 gsm handsheets at 250 ml CSF is confirmed in Table 3. It can be seen from the strength data listed in the various tables that gunny rag

	Table 1									
Cooking	Conditions for	Various Cellulosic	Raw	Materials :						

1	Raw Material	S.		Bambo	0	Rice	Straw	Pine	Euc	alyptus	Guony rags.	Whole baga- sse.	Whole Kenaf.	Kraft waste paper
F	ROCESS		Kraft	NSSC	Green Liq.		Lime Cook	Kraft	NSSC	Green Liq.	Soda Cook	Sođa Cook	Kraft Cook	
1. 2	Cooking Chem On OD Mater Time to Max.	ical 9 ial,	• 17.0 as TAA Na ₂ O	20.0 as Na ₂ SO ₃	24.0 as TTA Na ₂ O	6.0 as NaOH	6.0 as CaO	20,0 as TAA Na ₂ O	25.0 as Nag SO3	25.0 as TTA Na ₂ O	4.00 as NaOH	6.0 as NaOH	14.0 as TAA Na2O	
	Temp,	Min,	180	60	90	30	30	180	60	90	30	30	45	
3.	Time at Max. Temp,	Min.	90	300	120	120	120	9 0	300	120	120	180	90	· · ·
4.	Max. Temp,	°C,	155	160	165	140	140	170	140	165	170	140	165	_
5.	Bath Ratio, (Chips to Liquor)		1:2.5	1:2.5	1:2.5	1:5	1:5	1:2.5	1:2.5	1:2.5	1:5		1:5	
6.	Unscreened Yield on OD Raw Material	%	50.2	62.0	50.8	68.2	83.2	46.0	70.4		52.5		55.3	
7.	Refined Yield (OD Material	on %		60.3		56.4	75.2			53.1		71.7		
•	Screened Yield on OD Mate- rial	%	49.3	59,1	50.4	56.4	75.2	44.5	63.6	52. 8	50,2	59.7	48 .2	
9.	Permanganate Number of Un bleached Pulp,	-	22.0	24.0	31.5	15.0	20.7	23,0	34.8	28.5	•		16.5	21.6
	Kappa Number of Unbleached		·			-210		,-						-1.0
	Pulp,		34.9	42.0	74.0	22.7	31.8	31.8	39.0	84.8	58,2	78.2 . 2	24.3	30.5
1.	Ash	%	1.6	3.0	2.2	13,9	15.8	0.6	1.1	2.3	1.8	1.6	2.8	4.6

NOTE: For bamboo and Pine Kraft Cooks, Cooking Schedule is 45 Min, to 105°C, 45 Min. at 105°C, 90 Min to Max. temp. and 90 Min. at Max. temp.

Ippla Jan, Feb. & March, 1976 Vol. XI No. 1

Raw Material	В	amboo	• • • •	Rice S	Straw	Pine	Eucal	yptus	Gunby rags	Whole bagasse	Whole Kenaf	Kraft waste paper
Process	Kraft	NSSC	Green	Soda	Lime	Kr aft	NSSC	Green	Soda	Soda	Kraft	
	1		Liq.	Cook	Cook			Liq.	Cook	Cook	Cook	
Initial Freeness ml CSF	670	690	705	400	500	670	£90	520	670	450	60 0	500
Final Freeness ml CSF	250	250	250	150	150	300	250	250	250	20	250	250
Beating Time, Min.	58	63	62	25	38	- 60	35	37	59	16	23	19
Breaking Length, KM	76.60	6.6 6	5.54	2.46	2.40	7,80	6.95	7.77	5.71	2.76	8 57	3 47
Burst Factor, Mullen	42.2	45.1	50.1	25.6	196	56.9	40.2	44.6	53.9	22.0	52.3	25.8
Tear Factor, ELM	103	152	193	70.5	69.5	201	72 4	57.1	78.6	48	80	88.5
Double Folds, MIT	172	86	213	3	4	428	59	183	631	. 9	634	12
Sheet Density, g/cc. Fiber classification of unbeaten pulps (Clark)	0.60	0.62	0.55	0.62	0.58	0.66	0.67	0.65	0.55	0.62	0.74	0.57
+20 Mesh %	38.8	34.9	40.1	4.7	25.0	70.8	12.2	5.1	65.3	5.7	26.8	38.0
-20+50 Mesh %	19.7	17.5	16.8	20.8	14.9		28.8	33.2	12.8	27.2	32.8	17.0
-50+65 Mesh6 %	7.0	8.0	6.8	12.9	8.4	4.0	22.6	26.6	4.8	16.9	15.4	8 5
65+125 Mesh 6%	4.5	4.0		11.0	7.3	2.2	18.4	142	2.4	19.4	8.2	4.6
	30.0	36.1	30.7	50.6	44.4	10.3	18.0	20.9	14.7	30.8	16.8	31.9

Table 2Strength Evaluation (Valley Beater) of Unbleached Pulps from Different Cellulose Raw Materials(60 gam Handsheets)

	Table 3		
Strength Properties for	Different	Cellulosic Raw	Materials
(120 GSM Hand	sheets) at	450 ML CSF.	

Raw Material	Bamboo	Eucalyptu	s Pine	Whole Kenaf	Rice Straw	Whole bagasse.	Gunby rags	Waste
Process	Kraft	NSSC	Kraft	Kraft	Soda	Soda	Soda	<u> </u>
Initial Freeness, ML CSF	670	590	670	600	450	450	670	500
Final Freeness, ML CSF	450	450	450	450	450	450	450	450
Beating Time, Min.	30	15	25	5	0	. 0	30	4
Breaking Length KM.	6.49	5.82	7 .81	8. 36	2.75	3.73	4.54	2.97
Burst Factor, Mullen.	45.1	38.4	56.4	47.7	18.8	18 3	34.4	21.8
Tear Factor, Elm.	159	75.6	223	102	811	62	115	96
Double Folds, MIT.	220	3	732	540	3	2	42	9
Sheet Density	0.61	0.64	0.68	0.68	0.47	0.57	0.50	0.60
CMT (Concora) Kgs. Stiffness (Kenley) gms.	30.2	33.5	30.0	33.0	16.5	22.0	26.5	17.5
(of 120 gsm; 250 ML CSF handsheets)	4.65	5.10	7.9	4.15	3.9	5.1	8.5	4.9

Ippta Jan., Feb. & March 1976 Vol. XIII No. 1

pulp will add strength to the furnish, when mixed with weaker straw, bagasse or kraft waste paper pulp Medium quality corrugating medium/wrapping papers can be manufactured from such pulp furnishes. In the present study, new gunny rags are used. In actual practice, once or twice used gunny rags are cooked in the mills for the obvious reason of economy.

The concora crush results (CMT) in Table 3 are for type A flute a temperature of 360°F. at $(1/2'' \times 6'' \text{ strip})$. The highest CMT value is recorded for eucalyptus N.S.S.C. pulp. CMT values for the various pulps at 450 ml. CSF are: 3.2 Kgs. for bamboo kraft; 21.5 Kgs. for bamboo N.S.S.C. and 27.5 Kgs for bamboo green liquor, 16.5 Kgs. for rice straw soda and 11.7 Kgs for rice straw lime, 30 Kgs. for pine Kraft, 33.5 Kgs. for eucalyptus N.S.S.C. and 22.0 Kgs. for bagasse soda, 33.0 Kgs. for kenaf kraft, 24.2 kgs. for eucalyptus green liquor, 26.5 Kgs. for gunny soda and 17.5 Kgs. for kraft waste.

In the range of 700 ml to 250 ml CSF, CMT value increases with refining, however, on further refining to 100 ml CSF, the value has either remained constant or fallen. For bamboo green liquor pulp, for instance, CMT values at 705 ml CSF, 450 ml CSF and 100 ml CSF are 41.1 Kgs., 31.5 Kgs. and 31.0 Kgs. respectively. The stiffness values listed in Table 3 (for 120 GSM handsheets

at 250 ml CSF) show that lime cooked straw gives the stiffest sheet, which explains perhaps the utilisation of straw board in various packaging applications.

Green liquor cooks are being increasingly practised abroad on hard woods in place of traditional N.S.S.C cooks, owing to water pollution problems with N.S.S.C spent liquors, especially where cross recovery (with kraft black liquor) is not done. In the present study, the concora results for eucalyptus and bamboo N.S.S.C. and green liquor cooks seem contradictory. Eucalyptus N.S.S.C. pulp has given a higher CMT value of 33.5 Kgs as against 24.2 Kgs. for eucalyptus green liquor pulp. In case of bamboo, the N.S.S.C. pulp has yielded, however, a CMT value of 21.5 kgs. as against 27.5 Kgs. for green liquor pulp. A detailed investigation of N.S.S.C. and green liquor cooks will provide the final answer on the relative merits of each process for a particular raw material.

It may be mentioned that green liquor pulping of pine is being studied abroad for the manufacture of linerboard. The results obtained so far suggest that higher cooking chemical and lime are needed to produce pulps at somwhat of a higher yield and close to the present day linerboard grade pulps in paper characteristics. The making advantage of not going in for causticization and lime mud reburning is a positive feature of

green liquor pulping, especially at the present level of fuel oil prices. Attempts are also made to use as high a precentage of # green liquor hardwood pulps as possible in linerboard furnishes to conserve long fibred softwood species.

Market Papers

Strength properties of Indian Kraft papers and European fluting medium are listed in Table 4. It can be seen that the strength properties of most Indian kraft papers compare favourably with European fluting medium. The strength properties of kraft papers from straw and waste paper are predictably lower than those manufactured from virgin bamboo or wood pulps.

It is perhaps meaningful to leave corrugating medium manufacture to smaller paper mills. With the addition of long fibred gunny, rag or market bamboo pulp, the mini paper mill should be in a position to supply fluting medium of requisite quality.

Although neutral sulphite semichemical pulp gives fluting medium of the best quality, it is not possible at the present time to go in for this process in our country due to spent liquor recovery and water pollution problems.

Table 5 lists the specifications of some standard grades of corrugating medium and linerboard in United States The burst factors (mullen) of Indian kraft papers are somewhat lower than those of American linerboard grades of the same basis weight. This is

Ippta Jan, Feb. & March, 1976 Vol. XIII No. 1

The second s										
Properties	No. 1 70% Bamboo	Paper No. 2 90% Reed-	No.3 50% Gunny	Mills No. 4 100% Waste	No. 5 70% Waste	No. 6 75% Hard-	No 7 100% Bamb	NSSC	uropean Medi 0 100% Waste	um 100%
	30% Hard- wood	Bamboo 80% Hard- wood	50% Straw	Paper	Paper 30% Gunny	wood 25% Soft- wood	Ballio		Paper	Straw
Basis Weight, gsm	140	122.5	100.5	108	148	91	80	115	122	125
Caliper, Microns	230	180	180	205	275	140	150	216	233	218
Bulk, cc/g Breaking length, km	1.64	1.46	23	1.9	1.88	1.53	1.87	1.88	1.91	1.74
MI	4.97	5.45	3.0	3.64	3.47	4 32	4.37	7.10	4.9 0	3.5
	3.67	3 31	1.55	2.0 0	3.06	2.99	2.43	2.50	2.40	2.0
Avg	, 4.32	4.38	2.29	2.82	3 27	3.65	3 50	4.80	3.60	2.7
Burst factor, Mullen	22.1	29.2	12.6	13.2	18.0	23.2	22.8	32.2	27.8	21.0
Tear factor, Elmendor			00.0	0.4.6						
	128 5	153 3	90.0	94.6	85.1	118	114	56	88	57
	145.1	161.5	102	112	93.3	143	131	77	95	67
Double folds, MIT	137.1	157.4	96	103	89.2	130	122	66,5	91.5	62
MD		225	6	12		68	52		· <u> </u>	
CD		190	5	8		40	17		<u> </u>	
Avg	54	208	6	10		54	34			
Charac	teristics of	of America	Table n Corrugs		ium aod I	inerboa	d			
Basis Weight gsm		Caliper inc			urst Mulle				Concora	nsi(g)
125		0.009-0.00					/	`	42	pare
161										
	0	0.010 5–0. 01	20		80				55	
178	0	0.0105-0.01 0.0125	20		80				55 60	
178 185	C	0.0125 0.0118	1 20						55 60	
178	0	0.0125	20		95				60	
178 185		0.0125 0.0118 0.0119	Tab		95 10	5			60 	
178 185 205 Materials		0.0125 0.0118	Tab istics of N		95 10 ckaging N	5 Aaterials		•	60 	of basis
178 185		0.0125 0.0118 0.0119 Characteri	Tab istics of N of	lormal Pa	95 10 ckaging N	5		•	60 	
178 185 205 Materials Woods Plywood (Coniferous)		0.0125 0.0118 0.0119 Characteri Modulus	Tab istics of N of , Kg./m ²	ormal Pa Densi	95 10 ckaging N ty,	5 Aaterials Range of ness mm		• •	60 Range (
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch)		0.0125 0.0118 0.0119 Characteri Modulus elasticity	Tab istics of N of , Kg./m ² 10 ⁷	ormal Pa Densit Kg./m	95 10 ckaging N ty, 3 5	5 Aaterials Range of	thick		60 Range (
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards		0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75).	Tab istics of N of , Kg./m ² 10 ⁷	Ormal Pa Densif Kg./m 575-59 640-65	95 10 ckaging N ty, 3 5 60	5 faterials Range of ness mm 4-12	thick		60 Range (
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard		0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷	Tab istics of N of , Kg./m² 107 107	Ormal Pa Densit Kg./mi 575-59 640-65 900-95	95 10 ckaging N ty, 3 5 0 0	5 faterials Range of ness mm 4-12	thick		60 Range (weight	g/m²
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board		0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1	Tab istics of N of , Kg./m² 107 107	Densit Kg./mi 575-59 640-65 900-95 650-80	95 10 ckaging N ty, 3 5 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4	thick		60 Range (g/m²
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board		0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷)	Tab istics of N of , Kg./m² 10 ⁷ 10 ⁷ 10 ⁷	Ormal Pa Densit Kg./mi 575-59 640-65 900-95 650-80 650	95 10 ckaging N ty, 5 60 0 0	5 faterials Range of ness mm 4-12 4-12	thick		60 Range (weight 200-60(g/m²)
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board		0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35). (35.17 ⁷) (30–90).1	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-800	95 10 ckaging N ty, 5 60 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board Corrugated board Plastics	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-800 150-300	95 10 ckaging N ty, 5 60 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4	thick		60 Range (weight 200-60(g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dens	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35). (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-800 150-300 920	95 10 ckaging N ty, 5 10 0 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Corrugated board Plastics Polyethylene (Low Dens (,,) (High Den	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-800 150-300 920 960	95 10 ckagizg N ty, 5 00 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dens (,,) (High Den Polystyrene (Impact)	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-800 150-300 920 960 1050	95 10 ckaging N ty, 5 00 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dens (,,) (High Den Polystyrene (Impact) (,,) (Normal)	Some	0.0125 0.0118 0.0119 Characteri elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 ⁷ 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 36.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-80 150-300 920 960 1050 1050	95 10 ckaging N ty, 5 00 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Particle board Pasted board Corrugated board Plytypene (Low Dens (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35).1 (35–77) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 36.10 ⁷ 26.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-80 150-300 920 960 1050 1050 1050 1400	95 10 ckaging N ty, 5 00 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Particle board Corrugated board Plastics Polyethylene (Low Dens (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene	Some	0.0125 0.0118 0.0119 Characteri elasticity (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 ⁷ 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 36.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-80 150-300 920 960 1050 1050	95 10 ckaging N ty, 5 00 0 0	5 faterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dense (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene Metals	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 36.10 ⁷ 12.5.10 ⁷	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Densit Kg./m 575-59 640-65 900-95 650-80 650 625-80 150-300 920 960 1050 1050 1050 1400 900	95 10 ckaging N ty, 5 60 0 0 0	5 Aaterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 0.2-10 0.2-10 0.2-3 0.2-3 0.2-4 0.2-4	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Corrugated board Plastics Polyethylene (Low Dense (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene Metals Constructional Steel	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 12.5.10 ⁷ 2.10 ¹⁹	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Ormal Pa Densit Kg./mi 575-59 640-65 900-95 650-80 650 625-800 150-300 920 960 1050 1050 1400 900 7860	95 10 ckaging N ty, 5 60 0 0 0	5 Aaterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 0.2-10 0.2-10 0.2-3 0.2-3 0.2-4 0.2-4 0.2-10	thick		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dense (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene Metals Constructional Steel in Plate	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35). (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 12.5.10 ⁷ 2.10 ¹⁰ 2.10 ¹⁰	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Ormal Pa Densit Kg./mi 575-59 640-65 900-95 650-80 650 625-800 150-300 920 960 1050 1050 1400 900 7860 7860	95 10 ckaging N ty, 5 60 0 0 0	5 Aaterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 0.2-10 0.2-3 0.2-3 0.2-3 0.2-4 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-4 0.2-10 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-4 0.2-10 0.2-3 0.2-4 0.2-4 0.2-10 0.2-4 0.2-4 0.2-4 0.2-10 0.2-4 0.2	thick.		60 Range o weight 200-600 300-200	g/m²))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dense (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene Metals Constructional Steel Tin Plate Aluminium Plate	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35).1 (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 12.5.10 ⁷ 2.10 ¹⁰ 2.10 ¹⁰ 7.10 ⁹	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Jormal Pa Densit Kg./mi 575-59 640-65 900-95 650-80 650 625-800 150-300 920 960 1050 1050 1400 900 7860 2690	95 10 ckaging N ty, 5 60 0 0 0	5 Taterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 0.2-10 0.2-3 0.2-3 0.2-3 0.2-4 0.2-4 0.2-4 0.2-10 0.2-6.0	thick.		60 Range o weight 200-600 300-200	g/m²)))
178 185 205 Materials Woods Plywood (Coniferous) Plywood (Birch) Boards Hardboard Multilayer board Particle board Pasted board Corrugated board Plastics Polyethylene (Low Dense (,,) (High Den Polystyrene (Impact) (,,) (Normal) Poly Vinyl Ch'oride Polypropylene Metals Constructional Steel in Plate	Some	0.0125 0.0118 0.0119 Characteri Modulus elasticity, (30–60). (65–75). 45.10 ⁷ (14–35). (35.17 ⁷) (30–90).1 (3–36).10 2.10 ⁷ 12.10 ⁷ 26.10 ⁷ 12.5.10 ⁷ 2.10 ¹⁰ 2.10 ¹⁰	Tab istics of N of , Kg./m ² 10 ⁷ 10 ⁷ 10 ⁷	Ormal Pa Densit Kg./mi 575-59 640-65 900-95 650 625-800 150-300 920 960 1050 1050 1400 900 7860 7860	95 10 ckaging N ty, 5 60 0 0 0	5 Aaterials Range of ness mm 4-12 4-12 2.0-6.4 8-25 0.2-10 0.2-3 0.2-3 0.2-3 0.2-4 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-10 0.2-4 0.2-10 0.2-10 0.2-3 0.2-4 0.2-10 0.2-3 0.2-4 0.2-4 0.2-10 0.2-3 0.2-4 0.2-4 0.2-10 0.2-4 0.2-4 0.2-4 0.2-10 0.2-4 0.2	thick.		60 Range o weight 200-600 300-200	g/m²))

 Table 4

 Strength Prope ties of Some Indian & Foregin Kraft Papers

Ippta Jan., Feb. & March 1976 Vol. XIII No. 1

46

1

possibly due to differences in fibre used and the pulping process employed. Intensive efforts should be focussed on bamboo and other local raw materials to produce stronger with improvements in pulps pulping process and equipment. At the same time, research activities should be stepped up to develop packaging machinery and techniques to profitably utilise papers from local fibrous materials in various packaging applications.

High Strength Kraft Papers.

As is well known, it is difficult to manufacture from bamboo pulp (relatively short fibre compared to short wood pulps and having over 30% fines) high strength sack kraft papers. Pine and fir grown in Himalays yield stronger kraft pulps than could be obtained from bamboo, but quite close to those of not continental or North American softwood pulps used for multiwall sacks.

One way to manufacture high strength kraft paper will be to fractionate pulp into long fibered and short fibered fractions, It may be noted here that Black-Clawson's Celler-sizer, operating on pressurised fractionation principle, is stated³ to have been successfully employed in fractionating high yield virgin pulp and waste paper pulp to yield long fibred stock for liner board and short fibered stock for corrugating medium. This technique might prove useful

in upgrading bamboo pulp and refining the long fibred stock with additives like gums, starch, carboxy-methyl-cellulose, sodium silicate, etc. to further improve on sheet strength.

Papers made from short fibered raw materials, especially nonwoody fibers, have low tensile energy absorption (TEA) values due to the lower tensile and stretch values compared to sheets from wood pulps. It is found the TEA value, not just tensile or strech, controls the utility of sheet for multi-wall sack a papers. Clupak Inc. made use of the principle of mechanical compaction² of the sheet to increase the machine direction stretch around four to seven times as great as the stretch of the uncompacted paper, thereby increasing the TEA value by over 300%. The technique in brier is as follows: The moist web of paper, while, still in plastic form, is subjected to the recoil action of an endless elastic surface, a rubber belt or blanket. Judicious application of Clupak tcchnique will upgrade short fibered pulps like straw. baggasse, etc. in addition to the relatively longer fibered bamboo for use in high strength kraft papers for packaging cement, sugar and other products.

It is necessary to know whether a sustained and reasonable market exists for high strength kraft papers-sack kraft or multiwall sack It is worth considering Clupak technique of sheet compaction or Black Clawson's celler-sizer fiber classification, if kraft papers resulting from these techniques could be sold at attractive prices in the market, since the investment for equipment as well as operating costs are high to produce extensible kraft papers.

Stifness Considerations of Packaging Materials :

All packages should perform two essential functions :

(a) to protect the contents and (b) to isolate the contents from effects originating from the outside or inside of the package. The protective function requires stiffness to withstand handling. The insulation function can be satisfied by barrier properties obtained with the addition of plastics or aluminium foil or wax coating, etc.

The minimum amount of packaging material is normally determined by stiffness requirement, with the exception of brittle materials such as glass. Table 6. lists some important characteristics or the commonly used packaging materials⁴. Specific stiffness of packaging material can be determined bv the relationship $:S = \frac{E_{h^3}}{12}$ where S is specific stiffness, h is thickness of the packaging material and E is modulus or elasticity,. With the knowledge of price/unit weight

of packaging material, its density and elastic moduls, it can be shown that the finished packages of multi-layer board and corrgated fiber board have the lowest price per unit volume

Ippta Jan., Feb. & March, 1976 Vol. XIII No. 1

in practically the whole range of volumes for rigid packages⁵

Paper versus plastics and wood.

Plastics homogeneous, are uniform materials packaging that impart barrier characteristics like resistance to watervapour, etc. to packages. Poor adaptablity to graphic arts such as printing. difficulty to recycle from the solid waste disposal view point as well as high cost are the main deterrents in the of plastics for increased use packaging. Due to four-fold increase in fuel oil prices in the last two years, the competetive position of plastics worsened visa-vis paper in the packaging field. This situation may change in 1980 when India is supposed to become self-sufficient in oil.

In view of the higher excise duty on packaging papers at Rs. 1200/-ton presently, wood has staged a come-back as a packaging material in certain applications, especially in Northern India where it is available at relatively cheaper prices. It is hoped this will be a passing phase; otherwise fiber resoures which can be better put to use in pulping will be wasted in not so useful applications. Also, wooden packages will be heavier, inconvenient and the packing and transport costs higher than in paper hased packages. Furthermore, many countries do not accept wooden packages as these are prone to insect attack, etc. Constituting health hazards.

It looks right now that paper by itself or paper in combination with coatings, plastics, aluminium, foil, etc. that will continue to be the predominant packaging material in the next ten years to come.

Tests for packaging papers:

IS 1397-1967 lists specifications for kraft papers of grade I and II in regard to burst factor, breaking length, pH, cobb sizing and moisture content. For corrugating medium, CMT is more important than burst (mullen). Similarly, for linerboard, CLT (Concora liner test) and stiffness values are very important, in addition to burst. should be standards Indian revised to include these important tests.

n a serie de la composition de la compo La composition de la compo

and the second second

and the second second

and the second second

4.**4**.5

and grande galant set.

and the second second

Same and Ash

References :

- Report of the study team of fiber board in packaging, Indian Institute of packaging, March 1971.
- 2 Hamrick, H.L, Ippta Souvenir, P 109, International seminar 1972.
- 3. Peter Seifert and Kenneth Long, *Tappi* 57, No. 70, P 69, Oct. 1974.
- 4. Steenberg, B. et. al, Svensk paperstidning 77, No. 4, P 77, 1970.
- 5. Higham, R.A.R, A Handbook of Paperboard and Board, Vol 2, 1971.

Acknowledgements :

To Shri H.V. Takley of Hindustan Levers, Bombay, for American specifications on corrugating medium and linerboard.

To West Coast Paper Mills, Ltd. for Permission to conduct concora (CMT) tests in their research labortary.

To Shri M.G Kabildas and A.N. Desai of Quality Control Department, Central Pulp Mills, Ltd., for evaluation of market kraft papers.

(a) Solution (a) A second s

Ippta Jan., Feb. & March, 1976 Vol. XIII No. 1