B. N. BALDAWA

INTRODUCTION

Though there is no common pattern oi production for all paper mills, the one way to fix is to make a 'model' compiled after taking into account different limitations and restrictions of one's own unit. The exercise may be checked periodically with the experiences of competitive concerns of the industry as a whole. The exercise has also to be made within the constraints imposed by the Government authorities, moral duty, customer satisfaction etc. The ultimate object of framing a 'model' is to optimise the profits of the concern after taking into account all such limitations and restrictions.

The overall profitability of a paper mill depends mainly on its pattern of production which will have to be drawn periodically, whether it is for the year, month or for day-lo-day production planning. And, in this paper, the technique of selecting the best pattern of production has been explained with example, particularly when there are certain limiting factors. The techn:que of using different methods of Chart has been suggested, which is very simple to calculate and construct. This Chart device will prove to be very helpful tool for production planning and are flexible in nature to incorporate any change to suit the requirements of one's own unit. In short, once prepared, they will serve as Ready Reckoner, till further major change in its components is required.

For the purpose of framing the pattern, it is essential to study the cost structure of its products. Then a Chart will have to be prepared summarising the profit for each of the products. Finally, the pattern will have to be selected in a systematic manner taking into account all the limitations and restrictions of a unit. This technique will not only optimise the profits of a unit but avoid eleventh hour complications.

Production Chart Technique for Profit Optimisation

In a paper producing unit, setting up the proper manufacturing programme is of utmost importance. Any improper setting not only reduces the profits by Millions of Rupees, but may also create unexpected problems.
In this paper, systematic approach of drawing the production pattern has been explained with example. Various factors like certain plant limitations and sales restrictions worth considering and the method of taking those factors into account are also explained.
Particularly, it is emphasised that the pattern must be based on the optimum utilisation of the key factor of a unit rather than overall volume of production and that is how the profits can be optimised. In this paper, the pulp supply has been assumed as the limitation factor and by following the systematic ap. proach, it ts shown how the profitability can be improved by over a Million Rupees.

COST STRUCTURE AND ITS
 IMPORTANCE IN PRODUCTION PLANNING

The entire cost structure of any product can be divided into variable and fixed costs. Variable cost stands for that part of the total cost which varies in proportion to the volume of production, e.g. cost of raw material, chemicals, dyes etc., whereas fixed costs theoretically remains same irrespective of production volume within a particular range.

This aspect is being furiher discussed considering the following hypothetica! example of x integrated paper mill having 40,000 tomes capacity :
Therefore, the variable cost is 60% of the total cost, fixed being 40%.
Then there is 'gross profit margin', which is the excess of sales realisations over the total cost of production.
If there is any increase in production within a particular range, the extra cost for the additional production will only be to the extent of variable cost whercas the sales realisations will be to the

VARIABLE :	Total cost Rs. in million	Cost/ Tonnes	$\%$ of total cost excluding depreciation
Basic Raw Materials (Bamboo \& Wood)	10.54	264	17
Chemicals \& Dyes	12.40	310	20
Power \& Fuel	9.92	248	16
Packing \& Freight	4.34	108	7
	37.20	930	60
FIXED :	Total Cost Rs. in million	Cost/ Tonnes	\% of total cost excluding depre ciation
Salaries \& Wages	12.40	310	20
Interest	4.34	109	7
Administrative \& Misc. Expenses	4.84	108	\%
General Stores \& Spares	3.72	93	6
	24.80	620	40
	62.00	1550	100

Mr. B. N. Baldawa, Cost Accountant, West Coast Paper Mills Lid., Dandeli
(North Kanara), Mysore Siate.
full extent. Hence, the addition to the profits for such additional production will not only be the usual profit margin but also the fixed cost. These two coupled together is lermed as 'Contribution'.
Assuming in this case that the average realisation of paper is Rs. 2,100 per tonne and allowing say, 9% towards commission and discount, the net realisations will be Rs. 1,910 per tonne. Since its cost of production is Rs. 1,550 per tonne, the gross profit per tonne is Rs. $\mathbf{3 6 0}$. Further, considering that the unit increases its production from 40,000 to 40,500 tonnes, its profitability will work out as follows:

Production in Tonnes

Net realisation@1,910 per tonne
Less : Variable Cost @ Rs. 930 per tonne

Contribution Less : Fixed Cost

Gross Profit

Therefore, additional profit for 500 tonnes : Rs. 4,90,000.
i.e. additional profit per tonne : Rs. 980.

Thus, for the additional production, the profit is as large as Rs. 980 per tonnc instead of Rs. 36!) as tiscussed earlier becauee of non-addition in fixed cost which otherwise would be Rs. 620 per tonne.

This can also be expressed as under : Sales Price $=$ Variable Cost + Fixed
Cost + Profits
Or, $\mathbf{S}=\mathbf{V}+\mathbf{F}+\mathbf{P}$.
But since fixed cost plus profit is contribution (C)
$S=V+C$ or, $C=S-V$
i.e. $\mathrm{C}=1910-930=$ Rs. 980 .

Since the fixed cost component itself is 40% of the total cost, it is a special fealure that any additional production within a particular range, will result in substantial advantage. In certain circumstances it is found economical even to sacrifice slight efficiency to get higher production as long as there is overall advan:age.

PRODUCTWISE PROFIT RECKONER:

It is a sort of statement showing the produciwise profitability on time basis, whether it is per hour, per shift or per day of 24 hours because 'time' is the ultimate limiting factor for paper machines. It should never be on per tonne basis because the latter will rather tend to misguide. For example, if a product of 52 GSM gives a profit of Rs. 500 per tonne and that of 80 GSM Rs. 400 per tonne, if the comparison is on per tonne basis prima facie, it appears that the producl of 52 GSM is more proftabic. But, if it is taken into account that the production of 52

40,000	40,500
Rs. in mil.	Rs. in mil.
76.40	77.36
37.20	37.67
-24.20	39.69
24.80	24.80
14.40	14.89

GSM will only be 40 tonnes per dry whereas it is 70 tonnes in case of 80 GSM, the profitability in the former will only be Rs. 20,000 per day, in comparison to Rs. 28,000 in the latter. 'Therefore, producing 80 GSM is more profitable. This is entirely a reverse p:ciure than the earlier interpretation.

While drawing out such Chart, cost upto a common process from cost point of view can be considered at the same rates for all such relevant products and thereafter the additions can be made for special chemicals.

A general proforma of summarised profit reckoner is given as Chart I which may be further modified to suit one's own requirement :

These types of Charts will be very helpful in periodical production and profit planning. They also have flexibility to incorporate any changes whether in variable cost, fixed cost or sale price. These Charts can also be further manipulated to select the best product mix when there are certain limiling or kcy factors in an unit.

[^0]
CONSIDERATION OF LIMITING FACTOR IN PRODUCTION PLANNING

In every mill, there is bound to be one or other limiting factor, if not more, for example, the pulp supply may be a limiting factor for a particular mill whereas the availability of the raw material may be the limitation for the another unit and paper machine itself may be the limitation for some other unit. In such units, making the best utilisation of the limiting factor for optimum profits should be the main criterion in production plamning. This can best be discussed with an example. The following assumptions may be noted for the purpose :
a) There are two paper machines in the Mill;
b) Each machine can produce five varieties i.e. A, B, C, D, E, on Machine I and $1,2,3,4,5$ on Machine II; and
c) Pulp supply is limited to the extent of 110 tonnes a day.
Sales Restrictions is the other major limiting factor, which is being separately discussed at a later stage.

The other normal performances may be assumed as follows :

MACHINE I

 (a)	(b)	(c)	 (d)
A	50	90\%	20,000
B	60	84\%	33,000
C	70	85\%	28,000
D	90	80\%	34,000
E	70	85\%	£0,000
MACHINE II			
1	40	90\%	25,000
2	50	88\%	40,000
3	60	84\%	35,000
4	70	76\%	48,000
5	80	82%	50,000

To know just at a glance the effect on limiting factor and profits from each of the possible combinations, another reckoner as given in Chart II will have to be prepared.

Since the pulp supply is limited to the extent of 110 tonnes, there are certain product combinations bold in Chart II, which cannot be produced for want of sufficient pulp. All the same, producing such mix cannot be said to be impossible as there are certain alternatives to cope up to the short supply of pulp, say,
(a) to use purchased paper cuttings; and
(b) to reduce the paper production is some extent by reducing the speeds of the machines.

To simplify the calculations, select the most economical alternative. Suppose there are only above two alternatives and the substitution by purchased paper cuttings costs more by Rs. 600 per tonne whereas the loss by reducing the production for each tonne would be Rs. 980 as calculated earlier. Therefore assuming that the purchased cutting to paper ratio is 1 to 1 , it is advisable to purchase pulp and maintain full production than reducing the rate of production.

CHART - II

MACHINE I

a) Product	A	B	C	D	E
b) Paper Production/day in tonnes	50	60	70	90	70
c) Pulp required	90\%	84\%	85\%	80\%	85\%
d) Pulp required per day	45	50	59	72	59
e) Per day profits (\%00)	20^{\prime}	33'	28 '	34 '	30^{\prime}

MACHINE II

a	b	c	d	$\begin{array}{r} \mathbf{e} \\ 000) \end{array}$	Pulp	Prof.	Pulp	Prof.	$\mathbf{P u} \mathbf{u}^{\mathbf{\prime}} \mathbf{p}$	Frof.	Pulp	Prof	Pulp	Prof.
1	40	90\%	36	25	81	45	86	58'	95	53	108	59'	95	55
2	50	88\%	44	40^{\prime}	89	60^{\prime}	94	73°	103	68^{\prime}	116	74'	103	70^{\prime}
3	60	84\%	50	35'	95	55^{\prime}	100	68	109	63 '	122	69^{\prime}	109	65°
4	70	76\%	53	48'	98	68'	103	81	112	78	125	82'	112	78°
5	80	82\%	64	50°	109	70^{\prime}	114	83°	123	78	136	84'	123	80°

NOTE : All bold numbered product combinations denotes more pulp requirement than the maximum possible supply of 110 tonnes.

Prof. $=$ Profits.

Government Orders, Cultural Papers, Export Orders, etc. Besides, for a particular qualities there may not be sufficient demand in the market. Moreover certain products will have to be produced to maintain the past good relations with the particular customers or as a safeguard for future. For all these factors, therefore, sufficient provision will have to be made while setting out the pattern of production.

For the purpose, let us assume that the following minimum and maximum constraints will have to be considered every month :

MACHINE I

Product	Min. Tonnes	Max. Tonnes
A	300	NR
B	350	600
C	200	NR
D	NR	600
E	NR	800

MACHINE II

Product	Min. Tonnes	Max. Tonnes
1	100	200
2	100	200
3	200	200
4	NR	1000
5	NR	NR

(NR $=$ No Restriction)
Now, with the help of Chart IV, let us select the best matching pattern for the month taking into account all the above minimum and maximum constraints with the aim to get the best possible profits.
(See Chart VI, VII Annexure I \& II alongside)
Thus in selecting the best pattern, the emphasis has been shifted from overall paper production point of view to the pulp supply limitation. All the calculations are based on the key factor and the profits would be Rs. 2.06 million. For a moment, let us think whai pattern would have been selecied if the calculations were based on paper production point of view. In that case, it would be quite reasonable to assume the paper production limit of 130 tonnes a day. The combination of pro ducts making more than 130 tonnes. paper would have been straight-away

Ippta, Octoher, November \& December 1971, Vol. VIII, No. 4
rejected and the derived pattern would be as given in annexure II based on the product matchings detailed in annexure I with the similar sales restrictions. The profit in this case will only be Rs. 1.97 million and the capaciiy has not been utilised to the maximum extent.

Thus by shifting over the emphasis on the key factor of the given example, the profits have improved by Rs. 90,000 a month or over one Million Rupees a year.

Moreover, if due consideration is not given to the key factor, it may create certain complications and may, in fact, disturb the entire pattern of production. In certain cases, the product mix may suit from overall paper production limit, but may need more pulp than the available limit.

In similar way, the profits can be opiimised by setting the best pattern based on any limiting factor in a mill together with due consideration of all the sales restrictions.

However, in practice, there may be a large number of products with more number of machines, drawing the Charts of which may manually be very difficult and quite lengthy. Such cases can easily be solved with help of Com puters.

Now if summarised, the final monthly production pattern will be :
CHART VII

Product	MACHINE I				MACHINE II				
	Quantity Tonnes	No. of days	Profit/ day Rs.	Total profits Rs.	Product	Quantity Tonnes	No. of Days	Profit/ Day Bs.	Total Profits Rs.
A	300	6.0	20,000	1,20,000	1	100	2.5	25,000	62,500
B	600	9.9	23,000	3,26,700	2	100	2.0	40,000	80,000
C	200	2.9	28,000	81,200	- 3	200	3.3	E5,000	1,15,500
D	405	4.5	34,000	1,53,000	4	990	14.2	48,0000	6,81,600
E	330	4.7	30,000	1,41,000	5	480	6.0	50,000	3,00,000
Shut	-	2.0	-	-	Shut	-	2.0	-	-
	1,835	E0.0		8,21,900		1,875	30.0		12,39,600
				Production Profits	$\begin{array}{r} 3,710 \\ 20,61,500 \end{array}$	Tonnes Tonnes			

FINAL PATTERN
ANNEXURE II

ANNEXURE I

NACHINE!					MACHINE II			** Within the given limits B is the best match for product 3. But as the maximum limit for the product is
Product	Quantity Tonnes	Prod. day	No. of Days	Product	Quantity Tonnes	Prod./ day	No. of Days	
A	300	50	6.0	5	480	80	6.0	
P	350	60	5.8	4	405	70	5.8	600 tonnes, only 130 tonnes further
C	200	70	2.9	2	100	50	2.0	
D	225	90	2.5	1	35	40	0.9	can be made with product 3 and
B	120	60	2.0	1	100	40	2.5	rest will have to be matched with E .
**B	130	80	2.2	2	100	50	2.0	
E	75	70	1.1	3	200	60	3.3	
			22.5				22.5	
A	65	50	1.3	4	90	70	1.3	
A	210	50	4.2	5	$3 E 5$	80	4.2	Presented by Mr. B. N. Baldawa at the
Shut	-	-	2.0		-	-	2.0	IPPTA Amual Meeting held at New
	1,675		$\overline{30.0}$		1,845		30.0	IPPTA Annual Meeting held at New
	--		--		--		--	Delhi on November 8 \& 9, 1971.

[^0]: | Product | GSM | Production/ Day | Variable
 Cost/
 Tonne | Variance
 Cost/
 Day | Fixed
 Cost/
 Day | Total
 Cost/
 Day | Realisations | | Gross Profit Per Day |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | Per | Per | |
 | | | | | | | | Tonne | Day | |

 1

