New Bleaching Sequences to Eliminate Elemental Chlorine Usage

Ahmed Wasi Md. & Dathathreya C.T.

ABSTRACT

Laboratory Experiments were carried out to eliminate use of Elemental Chlorine. Earlier work carried out in many Laboratories indicate that maximum AOX gets generated in chlorination and Extraction Stage (after chlorination stage). Hence any reduction or elimination of chlorine usage will reduce AOX formation. Though AOX was not tested in our Experiments, the sequences have been developed by eliminating chlorine usage and it is expected that AOX would get reduced.

The conventional bleaching sequence used in India by many mills is CEHH. However, some mills also use the sequences $CEpHH \& CE_p HHP$.

The above three conventional sequences were compare with the four new sequences namely $OP_x EHH$, $OP_x EHHP$, $OP_x EPHH$ & $OP_x EPHHP$. In the new sequences developed it was found necessary to use 1st oxygen stage to reduce Kappa Number to a reasonable level so that further reduction could be achieved in $P_x E$ or $P_x Ep$ stage.

With an unbleached pulp of Kappa Number - 22, for Conventional Sequences, the total available chlorine consumed was 6.5 to 7.5% while for the new sequences it was 3.0 to 3.7 because no chlorine was used in chlorination stage. The brightness level achieved for conventional and New sequences were 78.5 to 80.0°GE. The Viscosity values for conventional sequences were between 6.6 to 7.41 m Pa s while it was 8.7 to 9.0 m pas for new sequences indicating less degradation.

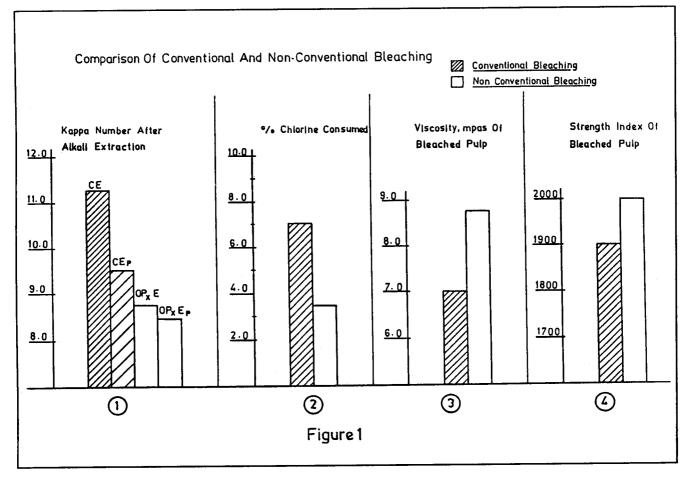
As expected, the P.C. Numbers were low (both for conventional & New sequences) if the last stage is a P-stage.

The strength properties of pulps of New Sequences were better (strength Index 1995 to 2003) as compared to conventional sequences (1858 to 1945).

These experiments indicate that P_x Stage can be a simple bleaching stage to reduce Kappa Number which can be easily incorporated into conventional sequences.

INTRODUCTION:

With the chlorine based bleaching processes currently used in India, the environmental impact of Pulp Mill effluents carrying AOX content has gained considerable attention.


In the developed countries, most of the mills have

already stopped using chlorine in 1st stage which has been completely replaced by chlorine dioxide. This technology is the so called 'ECF' technology and

* The Sirpur Paper Mills Limited, Sirpur-Kaghaznagar - 504 296 Dist. Adilabad (A.P.)

						•	In of Kanna N	0 66 - 204
					'n	Unbleached pulp of Kappa Number = 22.0	n addaer in di	Jmber – 22.0
SI. No.	-	2	3	+	S	9	7	œ
1 to 4 control sequences 5 to 8 test sequences	СЕНН	СЕННР	СЕ _Р НН	СЕ _р ннр	ОР _х енн	ОР _х еннр	ОР _х ЕрНН	ОР_хЕ рННР
Chlorination:					Oxvgen (Stage: 2.5% N	Oxygen Stage : 2.5% NaOH ; 0.5% Mg SO4;	lg SO ₄ ;
% dosage of CL as	3.85	3.85	3.85	3.85	10% con	sistency; 98 ±	10% consistency; $98 \pm 2^{\circ}C$ Temperature;	ire;
A.Cl. in chlorine water					5 kgs/cm	¹² O ₂ pressure;	5 kgs/cm ² O ₂ pressure; 60 Minutes Retention.	tention.
% consistency	3.0	3.0	3.0	3.0	Kappa N	lumber achieve	Kappa Number achieved after O_2 stage = 14.44	e = 14.44
Initial pH	2.80	2.80	2.81	2.81	Peracid ?	Stage (P _x): Act	Peracid Stage (P_x): Active Oxygen, % =0.2;	=0.2;
Temperature, ^{°C}		Ambient-			10% con	sistency; 80±.	10% consistency; 80± 2°C Temperature;	re;
Retnetion Time, hrs.,		1.0			60 minut	60 minutes Retention time.	ime.	
Final pH	3:36	3.36	3.42	3.72	Kappa N	lumber Achiev	Kappa Number Achieved : After P_x Stage = 10.28	tage = 10.28
Extraction Stage :							ł	
% dosage of NaOH	1.5	1.5	1.5	15.	1.5	1.5	1.5	1.5
% dosage of H,O,	:	:	0.5	0.5	1	ł	0.5	0.5
(as rec'd basis)								
% Consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Initial pH	10.54	10.54	10.21	10.21	10.92	10.92	10.47	10.47
Temperature, °C					. 65-70			
Retnetion Time, minutes,					45			5 0 1 1 0 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Initial pH	8.57	8.57	8.30	8.30	8.54	8.54	8.21	8.21
Kappa Number of Alkali	11.3	11.3	9.4	6.4	8.67	8.67	8.54	8.54
Extracted pulp								
Hypochlorite Stage-I:								
% dosage of Cl ₂ as	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31
A-Cl ₂ in Hypo								
% dosage of sulphamic acid	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
% dosage of NaOH	0.75	0.75	0.75	0.75	:		:	•
% consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
			000	000	6 7.A	8 7.4	0 00	00 0

SI. No.	-	2	3	4	5	9	7	8
Tempcrature, ^o C				35	35-40			
Retnetion Time, hrs.,					21/2	******		
Initial pH	8.21	8.21	8.51	8.51	7.82	7.82	7.69	7.69
% Residual chlorine	0.11	0.11	0.35	0.35		lin		
% Chlorine consumed in H1	2.20	2.20	1.96	1.96	2.31	2.31	2.31	2.31
Brigthness achieved, ^o GE	76.5	76.5	77.0 +	77.0	77.0	77.0	77.5	77.5
P.C. Number	8.59	8.59	8.21	8.21	11.56	11.56	10.79	10.79
<u>Hypochlorite Stage-II:</u>								
% dosage of Cl ₂ as	1.54	1.16	1.16	0.77	1.54	1.16	1.16	0.77
A-Cl ₂ in Hypo								
% dosage of sulphamic acid	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
% dosage of NaOH	0.2	0.2	0.2	0.2	:	;	ł	1
% consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Initial pH	6.44	9.62	9.68	9.48	8.56	8.62	8.71	8.62
Temperature, ^o C					35-40			
Retnetion Time, hrs.,	***							
Initial pH	8.89	8.91	8.65	8.54	7.74	7.79	7.42	7.69
% Residual chlorine	0.12	0.08	0.14	0.07	0.14	0.06	0.08	0.05
% Cl ₂ consumed in H ₂	1.42	1.08	1.02	0.70	1.40	1.10	1.08	0.72
Total % Cl ₂ consumed	7.47	7.13	6.83	6.51	3.71	3.41	3.39	3.03
in bleaching								
Brigthness achieved, °GE	80.0	78.0	80.0	78.5	80.0	78.5	80.5	78.5
P.C. Number	9.65	4.89	8.69	5.42	10.21	4.92	9.92	5.84
Final H ₂ O ₂ Stage :	0.05% Mg SO ₄ -7H ₂ O;	4	Ag SO ₄ -7H ₂ O; 0.75% Sodium Silicate; 0.75% NaOH; (Silicate ; 0.75	0.75% Sodium Silicate ; 0.75% NaOH; 0.5% H ₂ O ₂ (As received)	H ₂ O ₂ (As rece	ived) :	
Brinthness achieved ⁰ GF		naistency, JU I		, NUCHINIAN UN		0.09	1	0.08
sumos acineveu, or	•		ł	00.0	ŀ	0.00	}	
r.c. number	:	4C.2	:	2.32	1	7.72	1	+7.7
Viscosity, m. Pas (0.5% CED at 20°C)	7.41	7.18	6.93	6.62	8.84	8.69	8.96	8.84

another competing Technology is the 'TCF' technology which does not use any chlorine compounds.

However, among other methods to eliminate or minimize chlorine, 1st stage oxygen treatment is a well developed technology. To be selective, this process has to be done in two steps and this involved additional capital investment.

Recently methods have been developed to prepare peroxymonosulphuric acid just before use (1, 2) and an additional P_x stage followed by alkali extraction can bring down the Kappa Number further and hence chlorination can be completely eliminated.

The present work describes sequences where chlorination is completely eliminated.

EXPERIMENTAL

Pulp used for Experiments :

Screened Unbleached Kraft Chemical pulp collected from Pulp Mill : Kappa Number 22.0.

Peroxymonosulphuric Acid (Caros Acid) Preparation:

Addition of concentrated sulphuric acid to 50% w/w hydrogen peroxide in the mole ratio of 1.5:1 and maintaining the reaction temperature between 30 and 35°C. The prepared acid was stored in refrigerator for further use. Caro's acid has the formula H_2SO_5 , ${}_0^9HOO$, ${}_0^9OH$, The active oxygen of Caro's acid is 14% (based on mass by mass basis), as only one oxygen of O-O linkage permole is considered active.

BLEACHING (MULTISTATE)

Bleaching experiments were carried out on small batches of 400 g in water tight polythene bags. Temperature of reaction was maintained by immersing the polythene bags containing pulp & added bleaching agents in water bath whose temperature was maintained by immersing the polythene bags containing pulp & added bleaching agents in water bath whose temperature was maintained.

Strength Evaluation of Ble Sl. No. 1 2 3 Sl. No. 1 2 3 Sl. No. 1 2 3 sequences CEHH CEHHP CE _P HH cences CEHH CEHHP CE _p HH inn 55 50 50 $^{\circ}$ SR 15 14 15 min. 55 50 50 $^{\circ}$ SR 13 40 40 $^{\circ}$ SR 11.25 1.26 78 min. 8142 8090 7942 5 th, m 8142 56.96 54.49 5 49.71 49.54 47.12 4 422 384 315 4				
I 2 3 Ices CEHH CEHHP C 3 15 14 C 15 16 15 14 15 15 15 15 55 50 50 50 41 40 40 40 60 62 78 75 78 78 78 78 1.28 1.25 1.26 78 78 78 8142 8090 75 78 78 78 8142 8090 75 7449 5 5 56.96 54.49 5 5 5 5 49.71 49.54 47.12 4 5 5 422 384 315 4 5 5	hed Pulp			
CEHH CEHHP CE _P HH CE _P H CE _P HH CE _P H CE _P H <th>4 5</th> <th>9</th> <th>7</th> <th>œ</th>	4 5	9	7	œ
	ОР _х ЕНН	OP _x EHHP	OP _x E _p HH	OP _x E _p HHP
	5 13	14	13	13
$ {}^{\circ} SR \qquad 41 \qquad 40 \qquad 40 \qquad 40 \\ {}^{\circ} SR \qquad 61 \qquad 60 \qquad 62 \\ 78 \qquad 75 \qquad 78 \\ 1.28 \qquad 1.25 \qquad 1.26 \\ 1.28 \qquad 1.25 \qquad 1.26 \\ 1.26 \qquad 7942 \qquad 7 \\ 10, m \qquad 8142 \qquad 8090 \qquad 7942 \qquad 7 \\ 56.42 \qquad 56.96 \qquad 54.49 \qquad 55 \\ 49.71 \qquad 49.54 \qquad 47.12 \qquad 4^{\circ} \\ 422 \qquad 384 \qquad 315 \qquad 4^{\circ} \\ \end{array} $	5 60	65	65	65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 40	41	40	41
78 75 78 78 78 78 78 78 126 126 126 126 126 126 78 <	1 61	60	61	60
1.28 1.25 1.26 1h, m 8142 8090 7942 7 56.42 56.96 54.49 5 49.71 49.54 47.12 4 422 384 315 4	80	80	80	78
th, m 8142 8090 7942 7 56.42 56.96 54.49 5 49.71 49.54 47.12 4 422 384 315		1.33	1.31	1.31
56.42 56.96 54.49 5 49.71 49.54 47.12 4 422 384 315 4	œ	8601	8809	8421
49.71 49.54 47.12 4 422 384 315 4		57.92	59.05	58.11
422 384 315	2 52.18	51.84	53.21	51.89
		421	456	430
Strength Index 1945 1939 1858 1899	9 2003	1990	2029	1995

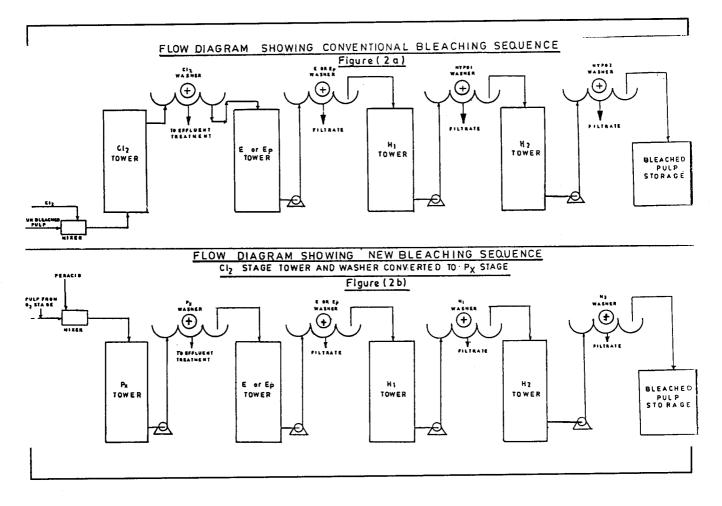
OXYGEN BLEACHING

This was carried out in a Laboratory autoclave of 2½ litre Capacity whose temperature could be maintained by steam jacket indirect heating. The autoclave is equipped with a stirrer to mix the contents manually, periodically, to ensure proper reaction with oxygen.

RESULTS AND DISCUSSIONS

Bleaching conditions and bleaching results are given in Table-1 and Figure-1. From the results it is observed that after E or EP stage, the Kappa Number is 9.4 to 11.3 for conventional sequences. For nonconventional sequence it is 8.54 to 8.67. This helps in reducing hypochlorite dosage to achieve same level of final brightness.

The total available chlorine consumed for conventional sequence is 6.51% to 7.47% whereas it is 3.03 to 3.71% for non-conventional sequences for final brightness of 78.5 to 80.0° GE showing a substantial reduction.


Final pulp brightness of 84-84°GE can also be achieved by slightly increasing the dosage of available chlorine. Accordingly to bleach a pulp of Kappa Number 22.4 (Table-3) total available chlorine consumed for conventional sequences is 7.60 to 8.73% whereas is 3.54 to 4.37 for non conventional sequences for final pulp brightness of 84-85°GE.

From Table-2, the bleached pulps of non conventional sequences are found to be stonger (Strength Index 1995 to 2003) as compared to conventional sequences (1858 to 1945). This is borne by higher final viscosity achieved (Table-1). as expected (based on our earlier work and plant operation) the pulps bleached with P-Stage as last stage have lower P.C. Number as compared to sequences without last P-Stage, irrespective of whether the sequence used is conventional or non-conventional.

Effluent characteristics for different bleaching sequences are given in Table-1. Comparatively COD, BOD and Colour values of Peracid Stage effluent (P_x) are lower than the effluent of chlorination stage (C) indicating a substantial reduction in effluent treatment load. Accordingly AOX generation would also be low for the new sequences as no elemental chlorine is used in bleaching.

Bleaching w	vith non-conv	ventional bleac	ching sequend	ces compared	Bleaching with non-conventional bleaching sequences compared to conventional bleaching sequences Unbleached pulp of Kap	bleaching se leached pulp	nal bleaching sequences Unbleached pulp of Kappa Number = 22.5	ıber = 22.5
SI. No.	1	7	3	4	S	6	7	∞
1 to 4 control sequences 5 to 8 test sequences	СЕНН	СЕННР	СЕРНН	СЕ _Р ННР		ОР _х ЕННР	OP _x e _p hh o	ОР _х Е _р ННР
Chlorination:					Oxvgen St	age: 2.5% N	Oxygen Stage : 2.5% NaOH ; 0.5% Mg SO ₄ ;	SO4;
% dosage of Cl, as	4.5	4.5	4.5	4.5	10% consis	stency; 98 ± 2	10% consistency; $98 \pm 2^{\circ}C$ Temperature:	•••
A-Cl, in chlorine water					5 kgs/cm ² C	² , pressure; 6	5 kgs/cm ² O ₂ pressure; 60 Minutes Retention.	ition.
% consitency	3.0	3.0	3.0	3.0	Kappa Nu	mber achiev	Kappa Number achieved after O ₂ stage = 13.4	e = 13.4
Initial pH	2.72	2.72	2.72	2.72	Peracid St	age (P _x): Act	Peracid Stage (P _x): Active Oxygen, % =0.2;	=0.2;
Temperature, °C	ł	Ambient			10% consis	stency; 80± 2	10% consistency; $80 \pm 2^{\circ}$ C Temperature;	
Retnetion Time, hrs.,	ł	1.0			60 minutes	60 minutes Retention time.	me.	
Final pH	3.92	3.92	3.92	3.92	Kappa Nu	mber Achiev	Kappa Number Achieved : After P ₂ Stage = 9.73	age = 9.73
Extraction Stage :							<	I
% dosage of NaOH	1.5	1.5	1.5	15.	1.5	1.5	1.5	1.5
% dosage of H ₂ O ₂	1	;	0.5	0.5	•	1	0.5	0.5
(as rec'd basis)								
% Consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Initial pH	10.93	10.93	10.86	10.86	11.05	11.05	10.97	10.97
Temperature, °C					. 65-70			
Retnetion Time, minutes,			*******					
Initial pH	8.71	8.71	8.57	8.57	8.62	8.62	8.50	8.50
Kappa Number of Alkali	10.22	10.22	9.35	9.35	8.58	8.58	8.20	8.20
Extracted pulp								
<u>Hypochlorite Stage-I:</u>								
% dosage of Cl ₂ as	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70
A-Cl ₂ in Hypo								
% dosage of sulphamic acid	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
% dosage of NaOH	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
% consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Initial nH	10.67	10.67	10.75	10.75	10 60	10.60	10 50	10.50

31. 170.	-	7	c	ŧ	2	•	/	•
Temperature, °C					35-40			
Retnetion Time, hrs.,		1		2 ¹ / ₂				
Initial pH	8.75	8.75	8.32	8.32	8.40	8.40	8.77	8.77
% Residual chlorine	0.15	0.15	0.39	0.39		liN		
% Chlorine consumed in H1	2.55	2.55	2.31	2.31	2.70	2.70	2.70	2.70
Brigthness achieved, ^o GE	79.5	79.5	80.0	80,0	80.0	80.0	80.5	80.5
Hypochlorite Stage-II:								
% dosage of Cl_2 as	1.80	1.35	1.35	0.9	1.80	1.35	1.35	0.0
A-Cl, in Hypo								
% dosage of sulphamic acid	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
% dosage of NaOH	0.2	0.2	0.2	0.2	1	;	ł	1
% consistency	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Initial pH	10.10	10.10	10.25	10.37	10.37	10.37	10.25	10.25
Temperature, °C					35-40			
Retnetion Time, hrs.,								
Initial pH	8.94	8.94	8.86	8.86	8.71	8.71	8.89	8.89
% Residual chlorine	0.12	0.07	0.18	0.11	0.13	0.05	0.09	0.06
% Cl, consumed in H,	1.68	1.28	1.17	0.79	1.67	1.30	1.26	0.84
Total % Cl, consumed	8.73	8.33	7.98	7.60	4.37	4.00	3.96	3.54
in bleaching								
Brigthness achieved, ^o GE	84.0	83.0	84.5	83.5	84.5	84.0	84.5	84.0
P.C. Number	8.39	5.42	8.34	4.91	6.39	4.98	5.43	4.68
Final H,O, Stage :	0.05% Mg SO ₄ -7H ₂ O;		.75% Sodium ?	Silicate ; 0.75%	0.75% Sodium Silicate ; 0.75% NaOH; 0.5% H_2O_2 (As received)	H ₂ O ₂ (As recei	ved) :	
4	10% co	nsistency; 55	10% consistency; 55 to 60°C Temp.; Retention time 3 hours.	; Retention tir	ne 3 hours.			
Brigthness achieved, ^o GE	ł	84.5	1	85.0	1	85.0	:	85.5
P.C. Number	1	3.18	:	3.22	:	3.12	:	3.24
Viscosity, m. Pas	7.22	10.7	7.12	7.11	7.88	7.81	7.97	7.84
(0.5% CED at 20°C)								

CONCLUSIONS

- 1. It is possible to incorporate a P_x -Stage in the present bleach plants (The chlorination Stage with its tower and washer being converted to P_x -Stage). P_x can easily be prepared and dosed without additional equipment (Figure-2).
- 2. To completely eliminate chlorination stage a pre-oxygen stage bleaching is required to bring down the Kappa Number to desired level for further bleaching.
- 3. The new sequences developed have a potential to completely eliminate first stage chlorination thereby reducing AOX generation.
- 4. The cost of chemicals for P_x Stage at dosage level of 0.2% (as Active oxygen) on pulp would be Rs. 556 per tonne pulp.

ACKNOWLEDGEMENT

We thank the Management of the Sirpur Paper

Mills Limited, for permitting us to publish this paper. Also we thank Mr. V. Venugopal, Mr. K. Jaya Kumar and Mr. Ramesh Jhawar for carrying out the experiments skillfully.

LEGEND

Abreviation used for Bleaching Stages

- C: Chlorination
- E: Alkali extratcion
- E_p : Alkali extraction augmented with Hydrogen peroxide
- H: Calcium Hypochlorite
- P_v : Peroxymono sulphuric Acid
- O: Oxygen.

Conventional Bleaching		CEHH			CEHH	Р	·	CEpt	1H	C	ЕрННР	
Sequence	COD	BOD	COLOR H. unit	COD	BOD	COLOR H. unit	COD	BOD	COLOR H. unit	COD	BOD	COLOR H. unit
C-stage	20.3	9.6	1000	20.3	9.6	1000	20.3	9.6	1000	20.3	9.6	1000
E- "	18.2	10.8	4000	18.2	10.8	4000						
Ep- ,,							19.9	3.1	5000	19.9	3.1	5000
Н, "	11.9	4.3	150	11.9	4.3	150	5.8	5.5	150	5.8	5.5	150
H ₂ ,,	4.1	8.6	50	4.1	8.6	50	4.3	4.8	50	4.3	4.8	50
P- stage				6.5	5.9	50				6.3	4.1	50
New		0P _x EHI	H	0P _x EHHP				0P _x E _P	нн		0P _x E	, HHP
Sequence	COD	BOD	COLOR	COD	BOD	COLOR	COD	BOD	COLOR	COD	BOD	COLOR
			H. unit			H. unit			H. unit			H. unit
0,-stage	31.5	12.9	2500	31.5	12.9	2500	31.5	12.9	2500	31.5	12.9	2500
P _x - ,,	7.7	8.2	100	7.5	8.2	100	7.5	8.2	100	7.5	8.2	100
Ê- "	13.1	2.6	600	13.1	2.6	600						
E _p - ,,							14.3	4.9	600	14.3	4.9	600
Н,- "	7.2	6.2	100	7.2	6.2	100	4.2	5.2	100	4.2	5.2	100
H ₂ - ,,	3.6	0.9	50	3.6	0.9	50	2.2	0.4	50	2.2	0.4	50
P-stage				4.3	0.36	50				6.1	0.42	50

TABLE-4 COD and BOD Load each stage, kg/t

REFERENCES

1. Bijan Amini and John Webster.

On-site peracids : Tools for bleaching strategies to meet the cluster rule and considerations on selecting among them. Tappi Journal, Vol. 78 (10), (October, 1995).

2. Robert W Allison and Kim G. Mc Grouther Improved Oxygen Delignification with inter stage peroxymonosulphuric acid treatment. Tappi Journal, Vol. 78 (10), (October, 1995).