Dissolving grade pulps from sesbania aculeata

SINGH S.P.* and ROYMOULIK S.K.**

ABSTRACT

The pulping studies have been done on S. aculeata for dissolving grade of pulps. The S. aculeata were analysed for their chemical and morphological characteristics. Liquor phase prehydrolysis have been carried out with and without mineral acid (0.20 gpl). The pulping studies were carried out by using different level of Sodium hydroxide (10,12,14,16 and 20%) and time at temperature (60, 90 and 120 mins). The pulps were bleached by using C-E H-D-SO₂ bleaching sequence. Viscose was formed by steeping, ageing and xanthation processes. The filteration constant was found to be KW 110.

It is well known fact that present forest resources can not meet the demand of raw material even for the existing units leaving aside the additional requirement for the future growth of pulp, paper and viscose industry. These industries in India have met the various challenges by adopting itself to the changed condition. The forest based raw materials are in tremendous short supply and cannot meet the projected pulp capacities. Further the depleting forest cover and the thrust to conserve ecological balance will force the industry to look alternative fibrous raw materials other than wood and bamboo. There is still wide scope for identifying some new potential non-wood fibrous plants for these industries. The present studies have been carried out on utilisation of Sesbania aculeata for dissolving grade pulp. Sesbania aculeata⁽¹⁾ (Dhaincha) is a agricultural byproduct, which is fast growing in nature. It attains a height of 3-6 M after 5-6 months. Like all legume, dhaincha also fixes atmospheric nitrogen with its root nodules. About 18,175 tonnes of dhaincha ploughed in one hectare yield about 77 kg. of nitrogen. The annual plant yield ranges from 11.3-13.8 tonnes of green matter/ha. The dhaincha is a light weight material with a packing density of 120-125 kgs/m³.

EXPERIMENTAL

Raw Material

The S. aculeata were collected from local regions. The stalk of plant were chopped manually to get chips of acceptable size. The chips were screened and the size of accepted chips varied from 25 mm to 35 mm.

Ghemical and Anatomical Studies

The air dried chips were disintegrated in a Laboratory WEVERK disintegrator. The -40+60 mesh portion was utilized for chemical analysis. All the analysis were carried out as per TAPPI methods. Section at different planes of the wood were cut on lietz base sledge microtome 1300. Fibre length, fibre diameter, lumen diameter and cell wall thickness were measured according to IS 5285. The results are reported in Table 1 and 2.

*Research Scientist **Director General Birla Research Institute for Applied Sciences Birlagram-456 331, Nagda, M.P.

TABLE -1

Proximate Chemical Analysis of S. aculeata

S.	Characteristics	Value		
No.		%		
1.	Cold water solubility	2.52		
2.	Hot water solubility	3.44		
3.	Alcohol-Benzene solubility $(1:2 V/v)$	3.60		
4.	1% NaOH Solubility	21.35		
. 5.	Lignin	20.20		
6.	Pentosan	17.30		
7.	Holocellulose	74.34		
8.	Hemicellulose	25.40		
9.	Alphacellulose	48 52		
10.	Beta cellulose	11.75		
11.	Gamma cellulose	13 20		
12.	Ash	1.72		
13.	Silica	0.50		

TABLE-2

Anatomical Characteristics of S. aculeata

SI. No.	Particulars		Value
1.	Colour		
			White
2.	Density	gm/c.c.	0.36
3.	Fibre length		
	(Average L)	mm	0.843
			(0.356-0.956)
4.	Fibre diameter		,
	(Average D)	micron	21.576
			(10.836-31.240
5.	Lumen diameter		
	(average d)	micron	14.82
	- ,		(4.02-22.120
6.	Cell wall thickness		(
	(average W)	microm	3.38
	(lineronn	(1.6575.120
7.	Ratio of fibra langth		(1.037
	Ratio of fibre length to diameter L/D		20.07
_	· · · ·		39.07
8.	Flexibility co-		
	efficient $(d/D) \times 100$		68 68

Prehydrolysis and Soda pulping

The prehydrolysis and pulping studies were carried out in WEVERK rotary autoclave digester of 20 liter capacity. Liquor phase prehydrolysis was done with and without addition of $H_3SO_4(^3)$. Cooking was done following soda process after draining and venting completely at the end of prehydrolysis. Prehydrolyzate and spent liquor were analysed for acidity, pH and free alkali. The extensive studies carried out in detail covering almost all the parameters that have a direct bearing on the resulting pulp properties. These include investigation of prehydrolysis and cooking at different time and temperature. Soda pulping was carried out at different level of active alkali (10 - 18%). The results are tabulated in table 3 to 6.

Bleaching

The pulp was bleached using $C-E-H-D-SO_2$ sequence. Soft water was used in every stage except for SO₂ stage where demin water was used. Bleached pulp was centricleaned and sheets were made by hand moulds. These were processed and dried in steam heated drying chamber. Sheets were processed to form viscose by using xanthation procedure and clogging constant Kw determined. The bleached pulp was analysed for important characteristics. The results are reported in Table 8.

Results and Discussions

The results of chemical analysis listed in Table 1 reveal that S. aculeata contain 48.52% alpha cellulose, 17.30% pentosan, 20.20% lignin, which place this fibre closer to hardwood. The fibre length (0.843mm) is short compared to softwood and bamboo. Lumen diameter and fibre diameter are good. Table 3 and 4 showed the effect of varying time (33-120 min) and temperature (155-165°C) during liquor phase prehydrolysis, when the time to temperature is kept constant. The acceptable degree of purification was achieved in about 60 min (acid prehydrolysis), 90 min(water prehydrolysis) at 165°C. As the time at temperature increased, the acidity of condensate formed increased, pentosans, yield and viscos ty of unbleached pulp decressed. The P. no. of unbleached pulp decreased with increasing time at temperature during prehydrolysis.

TABLE-3

Effect of time and Temperature on prehydrolysed S. aculeata and unbleached pulp

А.	Prehydrolysis				C.	Soda c	ooking		,			
 Acid (H_sSO_s) Material to liq. ratio Time to max. temp. Relieving time Washing — No washing 			Nil 1:3.		 A.A. as Na₂O Material to liq. ratio 					14% 1;3.5		
		90 min. 30 min.			 Time to max. temp. Max. temp. Time at max. temp. 					90 min 160°C 90 min.		
		·				6. Rel	ieving ti	me		1	5 mim.	
S No.	Characteristics		1	2	3	4	5	6	7	8	9	
· 1.	Max. temperature	°C	155	155	155	160	160	160	165	165	165	
2.	Time to temp.	min	60	90	120	60	90	120	60	90	120	
3.	P.H. yield	%	96.20	94.20	91.26	94.30	91.37	87.52	88.40	84.28	82.56	
4.	Pentosan in prehydro- lysed S. aculeata	%	16.42	14.75	11.46	15.10	10.56	9.25	11.52	8.10	5.92	
5.	Acidity of prehydrolysate as H ₂ SO ₄	gpl	5.10	5,92	6.80	5.60	7.66	8.40 、	7.60	8,84	10.72	
Spent	liquor											
6.	Free alkali	gpl	2.62	2.18	2.16	2.70	2.12	2.17	2.50	2.02	1.98	
7.	A.A. consumption	%	13.08	13.23	13.24	13.05	13.25	13.24	13.12	13.29	13.30	
Unble	ached pulp											
8.	Yield	%	43.72	40.60	37.92	40.85	37.60	36 45	37.10	35 14	31.90	
9.	P. No.		13.7	9 -2	8.7	9.4	8.2	7.8	8.1	7.2	6.9	
10.	Pentosans	%	11.52	7.80	4.96	8.20	4.75	4.60	4.36	3.15	2.82	
11.	Viscosity	ср	65.95	62.70	53.10	58.70	54.10	45.80	46.20	39.80	29 64	

IPPTA Vol. 2, No. 4, Dec. 1990

9

Table-4

Effects of Time and Temperature on prehydrolysed S. aculeata and Unbleached pulp

Α.	Prehydrolysis	14 14			C	Soda	cooking					
	1. Acid (H _a SO ₄)	a.		0.20	gpl	1. A	.A. as N	la ₂ O		14%		
	2. Material : liquor			1:3.5		2. N	laterial t		1:3.5			
3. Time to max. temp.				9 0 min			rme to m	р.	90 min			
	4. Relieving time			30 mi	n.	4 N	lax. tem) .		160	°C	
В.	Washing — No Was	hing			•	5. T i	ime at m	ax, temp	•	90	min	
						6. R	elieving 1	ime		15 n	nin	
S.N	o. Characteristics		1	2	3	4	5	6	7	8	9	
1.	Maximum temp.	°C	155	155	155	160	160	160	165	165	165	
2.	Time at temp.	min	30	60	90	30	60	90	30	60	90	
3.	P.H. Yield	%	95.90	93.98	91.02	93.95	91 .10	87.80	88 50	84.60	82.32	
4.	Pentosan in prehydr	olysed										
	S. aculeata	%	16.12	13.80	11.26	15.34	10.10	9.14	11.50	8.16	5.80	
5.	Acidity of prehydrol	•					5 05	c. 0.c	7 40	0.70	10.12	
	as (H ₂ SO ₄)	gpl	3.96	4.10	4.65	4.94	5.25	6.86	7.40	8.72	10 12	
Spe	nt liquor											
6.	Free alkali as Na ₂ O	gpl	2 40	2.10	2.15	2.32	2.06	2.10	2 .1 4	1.92	1.84	
7.	A.A. consumed	%	13.16	13.26	13.24	13.18	13.28	13.26	13.24	13.33	13.36	
Unł	pleached pulp										,	
8.	Yield	%	43.20	40.00	37.80	40.40	37.10	36.00	36.75	34.98	30.60	
9.	P. No.		13.2	8.9	8.2	9.1	7.8	7.3	7.9	6.8	6.2	
10.	Pentosan	%	11.06	7.15	4.26	7.90	4.10	3.96	4.04	2.92	2.56	
11.	Viscosity	СР	63.70	60.20	49.92	52.10	50.61	41.74	42.35	38.46	29.40	

		Effect c	м.п.т.	actor on	pronyard	Jiysed D.	dourouse		-	•			
A .	 A. Prehydrolysis Acid (H₂SO₄) Material to liquor Time to max. temp. Max. temp. Time at max temp. Relieving time P.H. yield Acidity of prehydroly- 			0.20 gpl 1.3.5 90 mins. 165°C 60 min. 30 min. 84.60% 8.70 gpl			 B. Washing — No washing C. Soda cooking A.A. as Na₂O Material to liquor Time to max. Temp. Relieving time 						
S.	No.	Zate as H ₂ SO ₄ Characteristics		1	2	3	4	5	6	7	8	9	
1. 2. 3.		H factor Max. temp. Time at temp.	oC min	358 155 60	489 155 90	619 155 120	553 160 60	753 160 90	954 160 120	840 165 60	1145 165 90	1450 165 120	
4. 5.		iquor Free alkali A.A consumption ched pulp	gpl %	3 20 12 88	2.94 12.97	2.40 13.16	2.38 13.16	1.92 13.33	1.98 13.31	2.19 13.23	1.80 13.37	1.76 13.38	
6. 7. 8. 9.		Yield P. No. Pentosan Viscosity	% % cp	39.20 9.7 4.90 54 34	36 90 8.6 4 40 46.10	34.62 7.2 3.87 40.21	36.40 8.4 3.30 47.80	35.00 6.8 2.94 38.46	32.20 6.0 2 70 34.24	36.00 8.1 3.22 42.65	33.10 6.1 2.82 36.92	30.85 54 2.56 29.20	

TABLE-5

Effect of 'H' Factor on prehydrolysed S. aculeata and Unbleached pulp

TABLE-6

Effect of varying Active alkali charge on prehydrolysed S. aculeata and Unbleached pulp

		- 1 / •				
A. Prehydrolysis			B. Washing	_	no v	vashing
 Acid (H₂SO₄) Material to liquor Time to Max. temp. Max. temp. Time at Max. temp. Relieving time P.H. Yield Acidity of prehydrolyzate as H₂ SO₄ 	0 20 gpl 1:3.5 90 mins. 165°C 60 min. 30 min. 84.25% e 8.74 gpl.		C. Soda cool 1. A.A. 2. Mater 3. Time 4. Max. 5. Time 6. Relie		14% 1:3.5 90 mins 160°C 90 mins 15 min.	
S No. Characteristics		1	2	3	4	5
1. Active alkali as Na ₂ O Spent liquor	%	10	12	14	16	18
2. Free alkali as Na ₂ O 3. A. A. consumption	gpl %	1.22 9.57	1.68 11.41	1 92 13.33	2.64 15.07	2.96 16.96
Unbleached pulp 4. Yield 5. P. No. 6. Pentosans 7. Viscosity	% CP	42 10 11.20 8 12 56 45	36.52 7.9 4.30 48.67	34 98 6.8 2.92 38.46	33.40 6.2 2.86 34.20	30.00 5.8 2.42 26.92

IPPTA Vol. 2, No 4, Dec. 1990

11

TABLE 7

Optimized Soda pulping

TABLE		8
-------	--	---

Bleaching conditions and Bleached Pulp charactestics

 Prehydrolysis Acid (H₂SO₄) Material to liquor Time to max. temp Max. temp. Time ai max. temp Relieving time 		0.20 gpl 1 : 3.5 90, mins. 165°C	S. No. Stages	Chemical as av. Cl ₂			
7. P. H. yield		60 mins. 30 mins 84.72%		NaOH and SO ₂ o.d. pulp %	on	°C	tion time min
8. Acidity of prehydro	olyzate	8.74 gpl	1. Chlorination	2.0	3	30	30
as H ₂ SO ₄		· .	2. Alkali extrac-	2.0	10	65	90
 B. Washing Cooking A.A. as Na₂O Material to liquor Time to max. temp. 		No washing 14% 1 : 3.5 90 mins. 160°C	tion 3. Hypochlorite 4. ClO ₂ 5. Acid (SO ₂) Pulp Characteristics 6. P. No	1.5 0.25 1.0			120 180 30
Time at Max. temp. Relieving time		90 mins. 15 mins.	 7. Viscosity 8. 1% NaOH solubility 	CP			
o. Characteristics t liquor		Particulars*	9. 7.14% NaOH solubility	% .	9.	60	
Free alkali A.A. consumed leached pulp	gpl %	1.90 13.34	solubility	%	0. 3	58 12	· .
Yield	%	35.06					
P.No.		6.8	-				
Pentosans	•/	2 95					
Viscosity	СР	38.51	- ,				
	as H ₂ SO ₄ Washing Cooking A.A. as Na ₂ O Material to liquor Time to max. temp. Max. temp. Time at Max. temp. Relieving time o. Characteristics t liquor Free alkali A.A. consumed eached pulp Yield P.No. Pentosans	as H ₂ SO ₄ Washing Cooking A.A. as Na ₂ O Material to liquor Time to max. temp. Max. temp. Max. temp. Time at Max. temp. Relieving time o. Characteristics t liquor Free alkali gpl A.A. consumed % eached pulp Yield % P.No. Pentosans % Viscosity CP	as H_2SO_4 No washingWashingNo washingCooking14%A.A. as Na_2O 14%Material to liquor1:3.5Time to max. temp.90 mins.Max. temp.160°CTime at Max. temp.90 mins.Relieving time15 mins.o. CharacteristicsParticulars*t liquor1.90A.A. consumed%Yield%Yield%P.No.6.8Pentosans%2.95	as H_2SO_4 I. ChlorinationWashingNo washing2. Alkali extractionCooking14%3. HypochloriteA.A. as Na_2O 14%5. Acid (SO_2) Material to liquor1: 3.590 mins.Time to max. temp.90 mins.Pulp CharacteristicsMax. temp.160°C6. P.No.Time at Max. temp.90 mins.7. ViscosityRelieving time15 mins.8. 1% NaOHsolubility9. 7.14% NaOHt liquor91 1.90Free alkaligpl1.90A.A. consumed%13.34Yield%35.06P.No.6.815. Gamma cellulosePentosans%2.95ViscosityCP38.51ViscosityCP38.51The construction of the state of	as H_3SO_4 1. Chlorination2.0WashingNo washing2. Alkali extrac-2.0Cooking1. Chlorination2.0A.A. as Na ₂ O14%3. Hypochlorite1.5A.A. as Na ₂ O14%5. Acid (SO_2) 1.0Material to liquor1: 3.590 mins.Pulp CharacteristicsTime to max. temp.90 mins.7. ViscosityCPMax. temp.160°C6. P. No.7. ViscosityCPRelieving time15 mins.8. 1% NaOHsolubility%o. CharacteristicsParticulars*9. 7.14% NaOHsolubility%t liquor13.3410. 10% NaOHsolubility%Yield%35.0613. Alpha Cellulose%P.No.6.815. Gamma cellulose%Pentosans%2.9516. Brightness (EL)%ViscosityCP38.5117. Clogging constant%	as H_2SO_4 I. Chlorination2.03WashingNo washing2. Alkali extrac-2.010WashingNo washing3. Hypochlorite1.510Cooking3. Hypochlorite1.5104. ClO ₂ 0.2510A.A. as Na ₂ O14%5. Acid (SO ₂)1.03Material to liquor1: 3.5Pulp CharacteristicsValTime to max. temp.90 mins.Pulp CharacteristicsValMax. temp.160°C6. P.No.0Time at Max. temp.90 mins.7. ViscosityCPo. CharacteristicsParticulars*9. 7.14% NaOHt liquor513.3410. 10% NaOHreached pulp%35.0613. Alpha Cellulose%Yield%35.0613. Alpha Cellulose%6.P.No.6.815. Gamma cellulose%1.Pentosans%2.9516. Brightness (EL)%92.ViscosityCP38.5117. Clogging constant110Kw _{20'40} 11010010.10.	as $H_{g}SO_{4}$ 1. Chlorination 2.0 3 30 Washing No washing Cooking 3. Hypochlorite 1.5 10 40 A.A. as Na _g O 14% A.A. as Na _g O 14% Material to liquor 1: 3.5 Time to max. temp. 90 mins. Max. temp. 160°C Max. temp. 90 mins. Time at Max. temp. 90 mins. O. Characteristics Particulars* O. Characteristics Particulars* Pree alkali gpl 1.90 1.00% A.A. consumed % Yield % P.No. 6.8 P.No. 6.8

The soda cooking were performed at different level of active alkali charge (10-18% as Na₂O) indicated that the total pulp yield is in indirect proportion with active alkali charge i.e. as the active alkali charge increases the total pulp yield decreases. Soda cooking were also performed at different H factor (358-1450). The pulp yield, P. no., pentosans and viscosity decreased as temperature and time at temperature increased. By considering the optimum yield, pentosan and viscosity, I4% active alkali (as Na₂O), temperature 160°C and time at temperature 90 min. was found suitable for the soda cooking of S aculeata Ten batches of pulps were prepared by using optimized conditions. It was observed that the pulps were readily bleachable under the condition chosen. The Table 8 showed that pulp having brightness about 92% (El), alpha cellulose 93.12% and pentosans 3.12% can be produced easily.

CONCLUSIONS

The results of chemical analysis, particularly high alpha cellulose content and low ash are encouragingly in favour of processing the S. aculeata to rayon grade pulp. Anatomical results are quite suitable except fibre length. Fibres present in S. aculeata wood are short in length compared to softwoods and bamboo. Short fibres of the pulp do not seem to affect viscose filterbility₃ and the fibres are highly reactive toward xanthation. Acid prehydrolysis was found to be most suitable for such raw material for the production of dissolving pulp. Bleached pulps when prepared using C-E-H-D $-SO_2$ sequence gave pulp of acceptable quality for the production of normal staple fibre. From the foregoing study it may be remarked that S. aculeata can be processed to yield rayon grade pulp of satisfactory characteristics. A clogging constant Kw (110) was found quite satisfactory and acceptable for rayon grade pulp. On the basis of the above experimental work, it was concluded that S. aculeata is quite suitable non-wood fibrous raw material for dissolving pulps. It can be

used as a partial replacement of conventional raw material.

ACKNOWLEDGEMENT

The authors thank Mr. I.H. parekh, Member, Board of Governors of Birla Research Institute and President Grasim Industries Ltd. to permit us for publishing this work. Thanks are also due to Dr. N.J. Rao and Dr. J. Upadhaya for their kind interest in the investigation.

REFERENCES

- Wealth of India, Raw Material (CSIR Publication) Vol. (9), 293-95 (1972)
- 2. Herman, F.J., Wenzl, Kraft pulping Theory and Practice, Lockwood Publishing Co. Inc., New York 67 (1967).
- 3. Miller, A. Tappi Vol. 33 (5), 248 (1950).