Effective Decolourisation of Pulp & Paper Industries Effluen By Using Chemical Treatment with Ferric Alum, Ferric Chloride & Anionic Polymer

A. Gnanasekaran*, G. Paruthimal Kalaignan* and G. Venkoba Rao**

The dosage of Ferric Alum for the coagulation and sedimentation of suspended solids and color present in effluent varies from 100 to 1000 ppm depends on the color and suspended solids of the mill untreated effluent. Self-generation of the sludge due to the low purity Alum is high. Coagulation and sedimentation studies revealed that Ferric chloride an alternate coagulant economically available as a by-product and suitable in place of Alum. Ferric Alum consumption was 3 - 4 times higher than the consumption of Ferric Chloride. Anionic polymer (0.5 ppm) can be used for better performance of coagulation and sedimentation of suspended solids and color reduction along with the dosage of Ferric alum. By using the anionic polymer along with Ferric alum can reduce not only the consumption of Ferric alum by 50 % but also significant reduction in color and Total suspended solids

INTRODUCTION

Color removal technique from pulp & paper industrial effluent has been a subject of study in the last few decades. Pulp & paper industry is one of the highly polluting industries. The wastewater from this industry has very high proportion of organic pollutant and significant color loads. Presently color reduction in industrial effluents has become a prominent issue due to increasing social awareness, changes in local regulations and aesthetic considerations. The color in a large integrated pulp & paper industrial effluent is mainly due to lignin and its derivatives. Principal colloidal color bodies include tannins, humic acids and humates from the decomposition of lignin. These lignin derivatives are highly colored and quite resistant to biological attack resulting in their long persistence in

the environment. Lignin and its derivatives impart an offensive color, which inhibit the natural process of photosynthesis in the stream due to absorbency of sunlight, this affects the whole aquatic ecosystem adversely. The large volume effluents contain both dissolved organic and inorganic solids along with a high chloride content. These properties rule out disposal by evaporation and subsequent incineration in the recovery furnace. Therefore a number of internal and external techniques have been developed to reduce these pollutants (1)

The coloring body present in pulp and paper mills effluent is comprised of wood extractives, lignin and its degradation products formed which is organic in nature, the chromophore groups which generally absorb ultraviolet (UV) light through their functional groups having excess electrons such as the C=C, -C=C-, six carbon atomic rings, nitro, sulfur, and oxygen containing groups hand heterocyclic compounds containing oxygen, nitrogen or sulfur as a member of cyclic ring. Those compounds, which absorb light in a visible range also contain the same high electron density functional groups, but usually arranged in a long chain. The length of the chain and the nature of the electron rich group dictate the shade of the color. Cleavage of one of these groups breaks the molecular chain and generally shifts the color from the visible spectrum to either UV or IR range (9).

Color in pulp & paper mills results from operations of pulping stages, washing stages, bleaching stages, spillovers & leakage. Two different approaches can be followed to eliminate the problem of effluent color. This includes, Process improvement and modification method to control the generation of these highly colored components and end of pipe treatment methods.

END OF PIPE TREATMENT METHODS

Various EOP treatment options, which have been tried, are confined to bleach effluents only. These methods included physico - chemical

^{*}Industrial Chemistry Department, Alagappa University, Karaikudi, Tamilnadu

^{**}Pulp & Paper Technical Consultant, Chennai.

treatment method, physical separation method, UV irradiation methods, biological method etc. Lime treatment, coagulation, adsorption using activated carbon & polymeric adsorbent, membrane separation processes and biological treatment using white rot fungus, etc. have been suggested. Chemical treatment methods include various lime treatment methods, coagulation oxidative treatment, methods. radiation methods, and electrochemical methods.

Color in pulp & paper effluent generally exists as negatively charged colloidal particles due to which, removal can occur by coagulation with the aid of trivalent or divalent salts such as Ca, Fe, or Al or by addition of cationic-type organic polymers. Treatment of negatively charged particles begins with neutralizing the charge to allow particles to bond onto larger and larger particle structures until removal by sedimentation can be achieved. The first part of the process, the charge neutralization is 'flocculation'. The called disadvantages of these systems are necessity to maintain absolute pH control and problems encountered in sludge handling.

The role of $Al_2(SO_4)_3$ or iron salts $FeCl_3$ or $Fe_2(SO_4)_3$ can be described as that of both flocculating and precipitating agents. Though the use of alum for color removal is relatively cheaper, sludge is difficult to handle and cannot be disposed of directly as landfill. $Al_2(SO_4)_3$ as well as $Fe_{2}(SO_{4})_{3}$ or FeCl₃ are inefficient in removing the color at lower ranges. In case of Fe₂ $(SO_4)_3$ or FeCl₃ increasing the dosage level in an effort to promote the color removal efficiency may actually increase the color level. This yellow iron compounds will impart a color to water if used in higher concentration levels (9).

Alum and ferric salts have been tried in lignin removal Mittal & Mehrotra 1981 showed that an alum dose of 245 mg/lit. And clay of 500 mg/lit reduced the color by 95%. Thickened sludge is obtained on coagulating color by alum and clay. Optimum alum dose needed to decolorize waste is reduced by lowering the pH of the waste (2). Fuller 1971 has patented a process for alum precipitation of effluent color after secondary treatment in the presence of alum mud (3). Thickened sludge is blended with primary and secondary sludge and dewatered to 30-40% solids in pressure filters before incineration in a multiple hearth furnace. Recovery of alum for reuse is accomplished through acidification with sulphuric acid. Over 90% decolourisation is achieved (4). Work on alum and polymer treatment of individual waste stream has been reported (5). The streams tested were unbleached Kraft effluents, screen room effluent, bleach Kraft effluent and spill overflows consisting largely of pulping liquor. The results of these studies were that alum coagulation and settling removed 81-93% of the color. Sludge dewatering was enhanced considerably by acidification of the sludge to a pH of 2 to 5 and heating to 80°C. Timpe et al 1973 reported color removal from caustic extraction effluent by aluminium chloride, aluminium sulphate and ferric sulphate. Polyelectrolytes and silica were added in some trials. It was found that neither silica nor organic polyelectrolytes had any significant effect on color removal but promoted flocculation and settling.

Christman and Smith 1969 (6) reported that coagulation of Kraft wastes with alum and ferric chloride resulted in a dense rapidly settling coagulum. Optimum pH was found to be 3.9 for ferric chloride and 5.3 for alum where as optimum dose was found to be a linear function of the initial color. At optimum pH and dose 92% and 95% color removal was achieved by alum and ferric chloride respectively. Olthof and Eckenfelder 1975 (7) described the results of the laboratory coagulation studies that the use of Iron salts for color removal from pulp & paper mill waste treatment can be an attractive alternative for lime treatment as the dose of the Iron salts required is only 25-33% of the lime dosage. Polyethylene oxide has been tried and reported to be promising at jar test level (8). From the available information it can be concluded that since the waste volume is large and highly colored, large quantities of coagulants will be required. Adjustment of pH prior to chemical treatment will also be necessary. Further the sludge obtained will offer problems of dewatering and disposal.

Certain organic polymers such as polyamines have been used to precipitate color from effluents. The Mixed Liquor Suspended Solids (MLSS) present in secondary clarifiers do not seem to interfere with the precipitation of color bodies. With a 600-mg/l-polyamine dosage, more than 85% color reduction can be achieved in bleach plant effluent. On the hand, alum dosages of 600 mg/l brought about 54% reduction in color. Precipitation of color bodies using polyamines was more effective than alum but more expensive. Again sludge handling and disposal poses problem in both. (9).

Presently pulp & paper mills are using 13.0 % Ferric Alum for the coagulation and sedimentation of suspended solids and color present ineffluent. The dosage of Ferric Alum varies from 100 to 1000 ppm depends on the color and suspended solids of the mill untreated effluent. The cost of Ferric Alum is getting increased. Self-generation of the sludge due to the low purity Alum is high. Color reduction studies were carried out with Ferric chloride an alternate coagulant economically available as a by-product and suitable in place of Alum. Color were also reduction studies conducted to reduce the existing consumption of Ferric Alum, by using anionic polymer along with Ferric Alum.

EXPERIMENTS

STUDY 1 - FERRIC CHLORIDE & FERRIC ALUM TREATMENT IN MILL UNTREATED EFFLUENT

Coagulation using Ferric chloride and

Ferric alum 5.0-gpl solution of Ferric Chloride and 10.0-gpl solutions of 13.0 % Ferric Alum was prepared. Four different mill untreated effluent samples were collected at different time intervals. The initial colors of the mill untreated effluent samples were 350 ppm, 550 ppm, 650 ppm, and 750 ppm. Due to wide variation in the initial color of the mill untreated effluent Different dosages were given with Ferric Chloride and Ferric Alum separately through Jar test method (1000 ml). 30 minutes settling time was given for each test. After settling the sludge, the sludge volume was measured and the supernatant was filtered through Whatman filter paper No.3. For the filtrate, pH, color, Total Dissolved Solids, Chlorides & Chemical Oxygen Demand were analyzed. The same tests were carried out for the Blank (untreated) also. The results were given in Table- 1, 2, 3 & 4.

STUDY 2 - ANIONIC POLYMER TREATMENTS WITH FERRIC ALUM IN MILL UNTREATED EFFLUENT

10.0 gpl solution of 13.0 % Ferric Alum & 0.1 gpl of Anionic polymer were prepared. The initial color of the effluent was 620 ppm. Polymer optimization study was conducted from the dosage of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 & 1.0 ppm with the fixed dosage of 300 ppm Ferric Alum and the results were given in Table 1. Four different mill untreated effluent samples were collected at different time intervals. The initial colors of the mill untreated effluent samples were 400 ppm, 460 ppm, 550 ppm, and 750 ppm. Due to wide variation in the initial color of the mill untreated effluent, different dosages were given with Ferric Alum along with the optimized dosage of Anionic polymer at the rate of 0.5 ppm separately through Jar test method (1000 ml). 30 minutes settling time was given for each test. After settling the sludge, the sludge volume was measured and the supernatant was filtered through Whatman filter paper No.3. For the filtrate, pH, color, Total Dissolved Solids, Chlorides &

				TAB	LE - 1							
		,	WILL UI	NTREA	TED EI	FLUE	۲٧					
FERRIC CHLORIDE TREA	TMEN	T WITH	i 100 p j	pm do	SAGE							_
	units	BLANK		FERRI	C CHU	ORIDE			FER	RIC AL	UM	
	ppm		20	40	60	80	100	100	150	200	250	300
Sludge volume(30min)	m	NII	20	30	50	70	80	25	30	80	80	80
рН		7.0	7.0	7.0	6.9	6.8	6.8	7	6.9	6.9	6.8	6.8
Colour in Pt.Co units	ppm	350	320	290	260	210	190	330	300	280	240	200
Colour Reduction	%		8.6	17.1	25.7	40.0	45.7	5.7	14.3	20.0	31.4	42.9
Total dissolved solids	ppm	2250	2200	2120	2060	2020	1980	2200	2175	2150	2125	2100
TDS Reduction	%		2.2	5.8	8.4	10.2	12.0	2.2	3.3	4.4	5.6	6.7
Chlorides as Cl	ppm	525	535	540	547	555	565	532	535	540	543	548
Chlorides increase	%		1.9	2.9	4.2	3.7	7.6	1.3	1.9	2.9	3.4	4.4
Chemical Oxygen Demand	ppm	410	370	350	320	290	250	380	360	330	300	270
COD Reduction	%		9.8	14.6	22.0	29.3	39.0	7.3	12.2	19.5	26.8	34.1

			TA	BLE - 2						
		MILL	UNTRE	ATED E	FFLUE	T				
FERRIC CHLORIDE TREA	TMEN	TWITH	150pp	n DOSA	GE					
	Units	BLANK	FE	ERRIC (HLORI	DE		FERRIC	C ALUM	
	ppm		100	125	150	175	400	500	600	700
Sludge volume(30min)	mi	Nil	40	40	50	50	70	80	80	80
рН		7.1	7.1	7.0	7.0	7.0	7.1	7.0	7.0	7.0
Colour in Pt.Co units	ppm	550	425	290	200	160	435	310	220	185
Colour Reduction	%		22.7	47.3	63,6	70.9	20.9	43.6	60.0	66.4
Total dissolved solids	ppm	2100	2045	1998	1925	1912	2085	2064	2050	2042
TDS Reduction	%		2.6	4.9	8.3 .	9.0	0.7	1.7	2.4	2.8
Chlorides as Cl	ppm	580	588	594	600	607	580	580	580	580
Chlorides increase	%		1.4	2.4	3.4	4.7	0.0	0.0	0.0	0.0
Chemical Oxygen Demand	ppm	450	400	365	310	290	410	375	315	300
COD Reduction	%		11.1	18.9	31.1	35.6	8.9	16.7	30.0	33.3

			ŤΑ	BLE - 3						1
		MILL	UNTRE	ATED E	FFLUEP	лт				
FERRIC CHLORIDE TREA	TMENT	WITH :	200 p p i	ndosa	GE					
	ppm		50	100	150	200	400	500	60 0	700
Sludge volume(30min)	mi	Nil	20	30	50	50	60	70	80	80
рН		7.2	7.2	7.2	7.1	7.0	7.1	7.1	7.1	6.9
Colour in Pt.Co units	ppm	650	610	425	375	300	460	400	380	320
Colour Reduction	%		6.2	34.6	42.3	53.8	29.2	38.5	41.5	50.8
Total dissolved solids	ppm	2200	2100	2010	1980	1780	2180	2170	2160	2155
TDS Reduction	%		4.5	8.6	10.0	19.1	0.9	1.4	1.8	2.0
Chlorides as Cl	ppm	600	603	607	612	614	·600	600	600	600
Chlorides increase	%		0.5	1.2	2.0	2.3	0.0	0 .0	0.0	0.0
Chemical Oxygen Demand	ppm	525	475	425	365	335	490	450	375	340
COD Reduction	%		9.5	19.0	30.5	36.2	6.7	14.3	28.6	35.2

				TAB	.E - 4							
		٨	ALL UN	TREAT	FED EF	FLUEN	π					
FERRIC CHLORIDE TREA	TMEN	TWITH	200 P P	mbos	AGE							
	Units	BLANK		FERR	C CHL	ORIDE			FER	RIC AL	.UM	
		ļ		105	450	4.75	000	300	500	600	700	800
	ppm		100	125	150	175	200	300	500	000	700	800
Sludge volume(30min)	m)	Nil	70	75	75	80	80	60	70	70	80	80
рН		7.4	7.3	7.2	7.2	7.1	7.1	7.2	7.2	7.1	7.1	7.0
Colour in Pt.Co units	ppm	750	450	425	400	375	350	470	450	430	410	370
Colour Reduction	%		40.0	43.3	46.7	50.0	53.3	37.3	40.0	42.7	45.3	50.7
Total dissolved solids	ppm	2325	2300	2268	2225	2194	2175	2290	2245	2202	2185	2185
TDS Reduction	%		1.1	2.5	4.3	5.6	6.5	1.5	3.4	5.3	6.0	6.0
Chlorides as Cl	ppm	650	653	658	661	665	670	650	650	650	650	650
Chlorides increase	%		0.5	1.2	1.7	2.3	3.1	0.0	0.0	0.0	0.0	0.0
Chemical Oxygen Demand	ppm	700	650	600	525	475	425	660	610	550	490	450
COD Reduction	%		7.1	14.3	25.0	32.1	39.3	5.7	12.9	21.4	30.0	35.7

					TABL	E-5							
POLYME	ROPT	'IMIZA'I	non w	ATH FE	RRIC	ALUM F	OR MI	L UNT	REATE	D EFFI	LUENT		
Paniculars	units	BLANK			1	OLYM	ER DO	SAGE	OPTIM	ZATIO	N		
Ferric Alum	ppm	0.0	300	300	300	300	300	300	300	300	300	300	300
Anionic Polymer	ppm	0.0	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Studge volume settled in 30 minutes	mi	Nit	30	30	35	35	35	40	40	40	40	45	45
рH		7.3	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
Colour in Pt.Co units Colour Reduction	ppm %	620	330 46.8	310 50.0	270 56.5	230 62.9	200 67,7	200 67.7	190 69.4	190 69.4	180 71.0	180 71.0	180 71.0
Total Solids TS reduction	ppm %	2710	2560 5.5	2502 7.7	2420 10.7	2380 12.2	2290 15.5	2220 18.1	2190 19.2	2190 19.2	2190 19.2	2190 19.2	219 19.:
Total Dissolved Solids TDS reduction	ppm %	2200	2190 0.5	2175 1.1	2165 1.6	2160 1.8	2155 2.0	2155 2.0	2150 2.3	2150 2.3	2150 2.3	2150 2.3	215 2.3
Suspended Solids SS reduction	ppm %	510	370 27.5	327 35.9	255 50.0	220 56.9	135 73.5	65 87.3	40 92.2	40 92.2	40 92.2	40 92.2	40 92.3
Chlorides as Cł Chlorides decrease	ppm %	610	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0	610 0.0

				TABLE	- 6							
		U	NTREAT	ED MIL	. EFFLU	ENT						
SAMPLE - 1 WITH COL	OR 40	0 Pt.Cou	inits									
Particulars	units	BLANK		FERRI	C ALUM		FERRIC ALUM +					
		1				,	0.5 ppm Anionic polymer					
Ferric Alum	opm		100	200	300	400	100	200	300	400		
Anionic Polymer	ppm	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.5	0.5		
Sludge volume settlad in 30 minutes pH	m	NII 7.5	20 7.4	30	40 7.3	50 7.2	25	35 7.3	50 7.3	60 7.2		
pri		1.5	1.4	1.3	1.5	1.2	1.4	1.3	1.5	1.2		
Colour in Pt.Co units	ppm	400	265	215	175	160	245	200	150	135		
Colour Reduction	%		33.8	46.3	56.3	60.0	38.8	50.0	62.5	66.3		
Total Solids	ppm	2690	2440	2252	2175	2065	2230	2160	2060	1990		
TS reduction	%		9.3	16.3	19.1	23.2	17.1	19.7	23.4	26.0		
Total Dissolved Solids TDS reduction	ppm %	2165	2080 3.9	2050 5.3	2025 6.5	1985 8.3	2090 3.5	2070 4.4	2030 6.2	1975 8.8		
Suspended Solids	mqq	525	360	202	150	80	140	90	30	15		
SS reduction	%		31.4	61.5	71.4	84.8	73. 3	82.9	94.3	97.1		
Chlorides as Cl	ppm	525	525	525	525	525	525	525	525	525		
Chlorides increase	%		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Chemical Oxygen Demand were analyzed. The same tests were carried out for the Blank (untreated) also.The results were given in Table- 2, 3, 4 & 5.

Sludge volume was measured from the graduation in the measuring cylinder. pH was measured in the Digital pH meter. Color was measured in the Spectrophotometer. Total dissolved solids were measured by Evaporation method. Chloride was measured by indicative titration method. (Mercuric Nitrate, Diphenyl carbazone & Nickel nitrate buffer). Chemical Oxygen Demand was measured by Oxidative Reduction method. (Potassium Dichromate, Ferrous Ammonium Sulphate and Ferroin indicator)

RESULTS AND DISCUSSION

Study 1 - Ferric Chloride: From the Table 1, it was observed that for the low color effluent (color of 350 Pt. Co units), the optimum dosage of Ferric chloride was 100 ppm and for Ferric Alum 300 ppm. Color reduction of 45.7 % & 42.9 %, TDS Reduction of 12.0 % & 6.7 % COD reduction of 39.0 % & 34.1 % for Ferric Chloride and Ferric Alum respectively and Chloride increase of 7.6 % were observed only for Ferric Chloride.

From the Table 2, it was observed that for the high color effluent (color of 550 Pt. Co units), the optimum dosage of Ferric chloride was 150 ppm and for Ferric Alum 600 ppm. Color reduction of 63.6 % & 60.0 %, TDS Reduction of 8.3 % & 2.4 %, Chloride increase of 3.4 % & 0.00 %, and COD reduction of 31.1 % & 30.0% were observed for Ferric Chloride and Ferric Alum respectively.

From the Table 3, it was observed that for the high color effluent (color of 650 Pt. Co units), the optimum dosage of Ferric chloride was 200 ppm and for Ferric Alum 700 ppm. Color reduction of 53.8 % & 50.8 %, TDS Reduction of 19.1 % & 2.0 %, Chloride increase of 2.0 % & 0.00 % and COD reduction of 30.5 % & 28.6% were observed for Ferric Chloride and Ferric Alum respectively.

						BLE -			_				
s	AMPLE - 2 WITH	COLOR	460 P) MILL	EFFLUE	NT.					
	Particulars	u	nits	3lank		FERRI	C ALUM			FERRIC	C ALUM	+	
	enic Alum	-	om	D.0	100	200	400	500	0.5	ppm An 200	ionic po	stymer 500	-
	nionic polymer		pm	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.5	0.5	
	ludge volume attled in 30 minute		n	Nil	5	10	20	25	10	20	30	35	
pi	н			7.6	7.5	7.4	7.0	6.8	7.5	7.4	7.0	6.8	
	olour in Pt.Co unit olour Reduction	1	pin %	460	300 34.8	275 40.2	225 51.1	200 56.5	250 45.7	225 51.1	200 56.5		
	otal Solids S reduction		pm	2640	2488 5.8	2388 9.5	2242 15.1	2206 16.4	2456 7.0	2306 12.7	2252 14.7		
	otal dissolved soli DS Reduction		pm %	2200	2124 3.5	2188 0.5	2164 1.6	2136 2.9	2194 0.3	2200 0.0	2208 -0.4		
	uspended Solids S reduction	1 1 1	pm %	440	364 17.3	200 54.5	78 82.3	70 84.1	262 40.5	106 75.9	44 90.0	40 90.	
	hlorides as Cl hlorides increase		pm %	564	564 0.0	564 0.0	564 0.0	564 0.0	564 0.0	564 0.0	564 0.0	56 0.0	
TABLE - 8													
			R 550 Pt.Co units										
	Particulars		BLAN	ĸ	, FE	RRIC	ALUM		0.5		C ALUI Nonic p		
	Ferric Alum pp		0.0	10		00	<u>300</u>	400 · 0.0	100 0.5	200	30(0.5	_	00 .5
Anionic Polymer ppm		ppm	0.0		<u> </u>			0.0					
Sludge volume settled in 30 minutes		ml	0	5		10	20	30	10	20	30		35
рН			7.5			7.4	7.3	7.2	7.4	7.3	7.3		.2
1	in Pt.Co units Reduction	ppm %	550	46		6.4	220 60.0	190 65.5	440 20.0	330 40.0	18 67.		60 0.9
Total : TS red		ppm %	232	0 21 8.	1	065 1.0	1980 14.7	1950 15.9	2080 10.3	1970 15.1			845 0.5
	Dissolved Solids	ppm %	179	0 17 0.		772	1785 0.3	1785 0.3	1775 0.8	1780 0.6	0.3	1	785).3
Suspe SS rec	nded Solids Juction	ppm %	530	34		293 4.7	195 63.2	165 68.9	305 42.5	190 64.2			60 8.7
	des as CI des reduction	ppm %	575	57		575 0.0	575 0.0	575 0.0	575 0.0	575 0.0	57 0.1		75).0
					т.	ABLE -	9						
								ENT					
	SAMPLE - 4 WI	тн соц	OR 7				EFFLU		4				
	Particular	\$	units	BLAN		FERR	IC ALUN	и			ALUM		
	Ferric Alum		ppm	1	100	200	300	408	100	200	300	400	Į
	Anionic polymer		ppm	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.5	0.5	
	Słudge volume settled in 30 mir	nutes	mi	ทส	10	15	20	20	15	25	30	35	
	рН			7.7	7.4	7.4	7.2	7.2	7.5	7.4	7.4	7.2	
	Colour in Pt.Co Colour Reductio		ppm %	750	640 14.7	460 38.7		350 53.3	610 18.7	440 41.3	340 54.7	300 60.0	
	Total Solids TS reduction		ppm %	2544	2410 5.3	2340 8.0	2260	2206 13.3	2260 11.2	2080 18.2	2040 19.8	2020 20.6	
	Total Dissolved TDS reduction	Solids	ppm %	2010	2000 0.5	2000 0.5		2000 0.5	2005 0.2	2000 0.5	2000 0.5	2005 0.2	
	Suspended Sol SS reduction	ids	ppm %	534	410 23.2			206 61.4	255 52.2	80 85.0	40 92.5	15 97.2	

520

520

520

opm

Chiorides as Cl

Chiorides decrease

520 520 520

520 520 520

From the Table 4, it was observed that for the high color effluent (color of 750 Pt. Co units), the optimum dosage of Ferric chloride was 200 ppm and for Ferric Alum 800 ppm. Color reduction of 53.3 % & 50.7 %, TDS Reduction of 6.5 % 6.0 %, Chloride increase of 3.1 % & 0.00 % and COD Reduction of 39.3 % & 35.7 % were observed for Ferric Chloride and Ferric Alum respectively.

Study - 1 indicates that the consumption of Ferric Chloride was between 100 to 200 ppm and Ferric Alum consumption was 300 to 800 ppm. It clearly indicated that the Ferric Alum consumption was 3 - 4 times higher than the consumption of Ferric Chloride.

Study - 2 Anionic Polymer: From the Table 5, it was observed that the optimized dosage of Anionic polymer for the 620 Pt. Co color effluent was 0.5 ppm. Ferric alum dosage was fixed at 300 ppm. There was only slight reduction in color and suspended solids in the increased dosages above 0.5 ppm of anionic polymer. Further studies were carried out with the fixed anionic polymer dosage of 0.5 ppm for different color level effluent samples collected.

From the Table 6, it was observed that for the effluent (color of 400 Pt. Co units), the optimum dosage of Ferric Alum was 400 ppm with 0.5 ppm of anionic polymer, Color reduction of 66.3 % & 60.0 %, TSS Reduction of 97.1 % & 84.8 % were observed for Ferric Alum with and without polymer dosage respectively. From the Table 7, it was observed that for the effluent (color of 460 Pt. Co units), the optimum dosage of Ferric Alum was 400 ppm with 0.5 ppm of anionic polymer, Color reduction of 56.5 % & 51.1 %, TSS Reduction of 90.0 % & 82.3 % were observed for Ferric Alum with and without polymer dosage respectively. From the Table 8, it was observed that for the effluent (color of 550 Pt. Co units), the optimum dosage of Ferric Alum was 400 ppm with 0.5ppm of anionic polymer, Color

reduction of 70.9 % & 65.5 %, TSS Reduction of 88.7 % & 68.9 % were observed for Ferric Alum with and without polymer dosage respectively. From the Table 9, it was observed that for the effluent (color of 750 Pt. Co units), the optimum dosage of Ferric Alum was 400 ppm with 0.5ppm of anionic polymer, Color reduction

of anomic polymer, color reduction of 60.0 % & 53.3 %, TSS Reduction of 97.2 % & 61.4 % were observed for Ferric Alum with and without polymer dosage respectively.

Study 2 indicates that the Anionic polymer consumption was optimized at 0.5 ppm with the fixed dosage of Ferric alum 300 ppm. Significant improvement in the color reduction and Total suspended solids reduction were observed at the 50 % reduced Ferric Alum dosage of 400 ppm with Anionic polymer in comparison with the dosage of Ferric Alum 800 ppm without any polymer addition.

CONCLUSION

Since Ferric chloride is available economically similar to Ferric Alum & the dosage of Ferric chloride is lower than Ferric alum, Ferric chloride can be used in-place of Ferric alum for coagulation and sedimentation of suspended solids and color present in mill untreated effluent.

The required Anionic polymer consumption for better performance of coagulation and sedimentation of suspended solids and color was 0.5 ppm with the fixed dosage of Ferric alum 300 ppm. By using the anionic polymer along with Ferric alum can reduce not only the consumption of Ferric alum by 50 % but also significant reduction in color and Total suspended solids

REFERENCES

 Gautam M., Dixit M.K., Kumar A Tyagi M.K, Color removal from Kraft mill effluents a review, West Coast Paper Mills Ltd, Dandeli IPPTA, Vol. 24 No. 2, June, 1987.

- Mittal A.K. and Mehrotra Indian Journal of Environ Health 23(3): 203, 1981.
- 3. Fuller R.R US. Patent 3, 627, 679, 1971.
- 4. Langs E.W. Alum coagulation treatment of Kraft in plant and total mill effluents. Presented at TAPPI environmental conference New Orleans proceedings, 1981.
- 5. Timpe W.G. E.W. Lange and R.L. Miller EPA report No. EPA-R 2-73-164, 1973.
- Christman R.F. and S.E. Smith, Journal of water pollution control, 41 (Feb): 22, 1969.
- Olthof M.G. and W.W. Eckenfelder Journal of water research 9: 853, 1975.
- 8. Ray, C.H, TAPPI 63: 63, 1980.
- 9. 3rd Cess training programme on chemical recovery and environmental management, CPPRI, India, Nov 2003.