A Systematic Approach of Controlling Water Soluble Scales in Modern Evaporator Plant

S. Suresh Khanna*, Ram Kumar**, N. J. Rao***, Kanna Babu****

Alfa Laval India Ltd., Pune, *DPT, IIT Roorkee, **JPIT, Guna(MP), ***ITC Paper Boards, Bhadrachalam (AP)

In Kraft pulping process, the evaporators, which concentrate the weak black liquor from $\sim 15\%$ to 65-75% total solids for firing in the recovery boiler, routinely foul with inorganic and/or organic scale on heat transfer surfaces. This is a major problem in modern evaporator plant, resulting in lost capacity and lost time for scale removal.

In respose to industry need, the study, is conducted on evaporator performance to evaluate the nature and extent of evaporator fouling problems (particular on water soluble scales) and is recommended a strategy to minimize the problem. Particularly at higher concentration of black liquor.

INTRODUCTION

Scaling and fouling of black liquor evaporator is a major problem in many pulp and paper mills. There are at least six compounds of groups of compounds in black liquor that contributes to fouling during evaporation,

- 1. Sodium compounds, (Na_2CO_3) and Na_3SO_4).
- 2. Calcium compounds (CaCO₃).
- 3. Aluminum and silica.
- 4. Cellulose fiber.
- 5. Black liquor soap.
- 6. Lignin.

Each of these has its own particular mechanism, and mainly depends on mill practice to avoid its effects. Sodium salts scaling is often referred to as "Burkeite" scaling and is the most common today's scaling issue for mills. Sodium salts scaling, sodium carbonate (Na_2CO_3) that results from incomplete causticizing of the green liquor, and sodium sulfate (Na_2SO_4) that results from incomplete reduction of sodium sulphate to sodium sulphide in the recovery boiler.

Solubility behavior of Na₂CO₃ + Na₂SO₄ in black liquor

Fouling occurs when Na_2SO_4 and Na_2CO_3 precipitate from solution as illustrated [1] in Figure 1. The two critical solids points occur as the liquor solids content is raised. The Ist critical solids point occurs when the liquor becomes saturated with respect to Na_2SO_4 + Na_2CO_3 and burkeite starts to precipitate. At the 2nd critical solids point, Na₂SO₄ has been depleted and the solution becomes saturated with the remaining Na₂SO₄ and Na₂CO₃ precipitates along with any remaining burkeite. The steeper slope above the 2nd critical solids point indicates that the extra Na₂CO₃ precipitate at a significantly higher rate than the burkeite above the 2nd critical solids point. This increase in precipitation rate is an important characteristic of the 2nd critical solids point.

The observed evaporator fouling behavior can be described in terms of specific fouling regions that have been identified in figure 1. Fouling is "minimal" in region A. In reigon B, where burkeite is gradually precipitating; the fouling is "manageable". The fouling is "serious" in region C, a small solids change around the 2nd critical solids point, leads to the sudden increase in precipitation rate. Finally, above the 2nd critical solids point, the fouling behavior once again becomes "manageable" (region B) as the additional precipitate has had the opportunity to grow on existing crystals.

The relative composition of Na_2SO_4 and Na_2CO_3 in the black liquor determines the locations of the 1st and 2nd critical solids points. These can be moved as illustrated in figure 2. Addition of Na_2SO_4 to the system (e.g., makeup salt cake) will increase the 2^{nd} critical solids point. This is a desirable effect. However, because of the extra salt in the system, the 1st critical solids point will decrease, which is not desirable. To prevent this decrease in 1st critical solids. Sulfate should be added after 1st point. Reducing the Na_2CO_3 content (e.g., by improving the causticizing conversion) will increase both critical solids points, which is desirable. The precipitation rate above the 2^{nd} critical solids point is higher than just below it. The 2^{nd} critical solids point can be controlled by adjusting the Na₂CO₃ and /or Na₂SO₄ content of the liquor. The 2^{nd} critical solids point also correlates with soluble-scale problems in fallingfilm evaporators.

Figure 1 : Solubility behavior of $Na_2SO_4 + Na_2CO_3$ in black liquor [1].

Figure 2: Control of critical solids points by varying the black liquor chemistry [1].

The solubility of the $2Na_2SO_4$, Na_2CO_3 is independent of temperature in range of 100-140°C and is assumed to be unaffected by liquor organics. The major components affecting burkeite solubility are,

- Effective sodium
- Na₂CO₃ + Na₂SO₄ mass-concentration ratio
- Blank liquor solids content.

Mathematical model to predict first critical solid point

The mathematical equation [3] helped to predict BLS from a known $Na_2CO_3 + Na_2SO_4$ weight % on solids and known level of effective sodium. Both values are obtained from a WL analysis of Na_2CO_3 . Na_2SO_4 , Na_2SO

and NaOH.

Effective sodium is defined as.

• Effective sodium, g Na/L = Total sodium -23(Na,CO,/53 + Na,SO,/71)1

Figure 3: Observed solubility of burkeite in black liquor (at Na_2CO_3/Na_2SO_4 ratio of 80:20) at six levels of effective sodium [13]

Figure 4 : Correction factor for determine solubility of burkeite in black (relative to Na_2CO_3/Na_2SO_4 ratio of 80:20) at five level of effective sodium [3]

The general solubility relationship at Na_2CO_3/Na_2SO_4 ratio of 80:20, from data developed by T.M. Grace is,

• BLS = 85.47 - 1.47Z - 0.95W2

The correction factors for the other Na_2CO_3/Na_2SO_4 ratio of 80:20 from data developed by T.M. Grace is,

• $f=r(5*10^{-5}x^2 - 7.7*10^{-4}x - 2*10^{-5}) - (1.013*10^{-3}x^2 + 0.01568x + 0.9993) \dots 3$

The relations are referred to the following data developed by T. M Grace (13),

Finally; the critical BLS - the black liquor solids content where burkeit precipitation will begin-is calculated from following equation using the correction factor (eq., 3) and liquor solids content (eq., 2),

• Critical BLS, % = [f(BLS/100)]/{1-(1-f)(BLS/ 100)]}.....4

Where,

Z - Effective sodium, % on total BLS

W - Na,CO, + Na,SO, % wt on total BLS

BLS - Black liquor solids, %

x = [(effective sodium, %* BLS, %)/(100-BLS, %)].

f-Correction factor

r-Precent Na₂SO₄ from ratio of Na₂CO₃/Na₂SO₄.

Possible improvement by controlling water soluble scale - A mill case study

The evaporation of WBL from 18%TS to 67%TS is taken care by 7 effects FFFF evaporator, with the steam economy of 5.98. The first effect is subdivided in to three bodies out of which two are working and one is available for cleaning with WBL and process condensate. Similarly, the second effect is subdivided in to two bodies out of which one is working and other is available for cleaning. The change over of bodies takes place after each 5 hours of running. The body change over sequence is given in Appendix-1.

The system is supplied by manufacturer for 8 hrs running cycle, due to the problem of scaling; the running hours came down to 5 hrs. The analysis is carried to find out the nature of scale formation. The samples of scale had been collected during the washing period of the effects; the results are given in Table (1).

 Table 1 : Analysis of Scales from 2nd effect of Multi Effect

 Evaporator

and the second second	
1ª Hour of	4 th hour of
washing	washing
1.2	0.68
0.46	0.09
8.71	1.3034
3.08	2.06
2.07	-
35.31	31.28
	1* Hour of washing 1.2 0.46 8.71 3.08 2.07 35.31

The discussion with referred to above table; it is found that natures of scales are water soluble. Where the hard scales due to CaCO₃ is less in percentage compared to

Table 2 : White	liquor Ana	lysis
-----------------	------------	-------

White Liquor Analysis	(as Na ₂ O)	
NaOH	:	68 gpl
Na ₂ S	:	21gpl
Na ₂ CO ₃	:	17 gpl
Na ₂ SO ₄	:	2.3gpl
Active Alkali	:	89 gpl
Sulphidity	:	23.59%
TTA	:	106 gpl
Causticizing Efficiency	:	80%

Figure 5 : Critical solids % TS Vs EA/Wood Ratio

Figure 6 : Causticizing Efficiency, % Vs Critical solids % TS

water soluble scales. The system behavior at beginning of each cycle is observed (i.e. after each boil outs) and compared with behavior after periodic cleaning (i.e. once in two months pressurized water cleaning), the deviation is less. So study is carried on controlling the water soluble scales.

The first critical solid point of black liquor evaporation of present system using the white liquor analysis in Table (2) is calculated and results are shown with effect of variation in causticizing efficiency and EA/Wood ratio on critical black liquor solids, in figure (5,6). And assuming the brown stock yield to be steady of 46%.

The solubility of sodium salts from black liquor is also predicted using white liquor analysis in Table (2), the

Figure 7 :Results of solubility level of burkeite in black liquor evaporation

results are shown in figure (7,8).

Figure (5) shows predicted relationship between critical solids and the EA/ wood ratio. The EA / wood ratio is a pulping parameter driven on bases of pulp quality not on black liquor evaporation. The present EA/ wood ratio is 0.165, the burkeite begins to precipitate at 50% BLS. At particular case EA/ wood ratio of 0.2, the burkeite begins to precipitate at about 2.62% weight on BLS, lower than the present condition.

Figure (6) shows predicted relationship between critical solids and the causticizing efficiency. The relation is predicted at present EA/ wood ratio of 0.165. The present causticizing efficiency is 80%. At particular case of 77% causticizing efficiency, the burkeite begins to precipitate at about 0.51% lower than present condition.

- At critical solids point of 49-52% the fall of Na₂CO₃
 + Na₂SO₄% wt on BL is higher than 47-49% solids point.
- Where the settlement rate of Burkeite is higher at critical solids point of 49 to 52% is predicted.

Figure 8 : Effect of $Na_2SO_4\%$ wt on black solids and its effect on solubility level of burkeite in black liquor evaporation.

Based on the predicted results shown in Figure(7,8), the conclusion drawn as,

Figure 9: Overall heat transfer co-efficient for the present 5hrs running cycle, w/m2deg.C

Table 3 : Composition of Na,CO, and Na,SO	, in concentrated black liquor from effect 1& 2
--	---

		Effect-2	• 		Effect-1	
	1	2	3	1	2	3
In	40.13	40.31	42.77	49.48	48.83	50.65
Out	49.48	48.83	50.65	66.30	64.20	63.00
In	20.54	21.81	18.08	18.96	16.55	15.78
Out	18.95	16.56	15.78	11.73	11.38	14.96
In	6.35	7.05	5.75	6.35	3.17	3.81
Out	6.11	3.17	3.81	3.57	2.62	2.31
In	3.36	3.09	3.14	2.99	5.22	4.14
Out	2.98	5.22	4.14	3.29	4.43	6.48
	In Out In Out In Out In Out	In 40.13 Out 49.48 In 20.54 Out 18.95 In 6.35 Out 6.11 In 3.36 Out 2.98	Effect-2 1 2 In 40.13 40.31 Out 49.48 48.83 In 20.54 21.81 Out 18.95 16.56 In 6.35 7.05 Out 6.11 3.17 In 3.36 3.09 Out 2.98 5.22	Effect-2 1 2 3 In 40.13 40.31 42.77 Out 49.48 48.83 50.65 In 20.54 21.81 18.08 Out 18.95 16.56 15.78 In 6.35 7.05 5.75 Out 6.11 3.17 3.81 In 3.36 3.09 3.14 Out 2.98 5.22 4.14	Effect-2 1 2 3 1 In 40.13 40.31 42.77 49.48 Out 49.48 48.83 50.65 66.30 In 20.54 21.81 18.08 18.96 Out 18.95 16.56 15.78 11.73 In 6.35 7.05 5.75 6.35 Out 6.11 3.17 3.81 3.57 In 3.36 3.09 3.14 2.99 Out 2.98 5.22 4.14 3.29	Effect-2Effect-112312In40.1340.3142.7749.4848.83Out49.4848.8350.6566.3064.20In20.5421.8118.0818.9616.55Out18.9516.5615.7811.7311.38In6.357.055.756.353.17Out6.113.173.813.572.62In3.363.093.142.995.22Out2.985.224.143.294.43

The samples of black liquor, feed to 2^{nd} , feed to 1^{st} effect, and feed to HBL tank is collected from the time of body change over to next change over time. At the same, the performance of the body is noted; the system behavior is shown in figure 9. The Na₂CO₃ and Na₂SO₄ are tested from the collected samples, to know the rate of precipitation of sodium salts from the black liquor. The results are such,

Based on analysis shown in Table 3 & Figure 9, the following conclusion drawn as,

- The samples concentration levels are in the range of predicted critical solids points.
- The ratio of Na₂CO₃ to Na₂SO₄ feed to 2nd effect is 3.5. It is on higher side.

Figure 10 : Predicted Overall heat transfer co-efficient for 6 hours operating cycle.

 The system overall heat transfer co-efficient fall with respect to precipitation rate of sodium salts from black liquor evaporation is uniform.

Figure 11 : Predicted Overall heat transfer co-efficient for 8 hours operating cycle.

 The sodium salts precipitation is higher in mid hours of 2nd effect and in beginning hours of 1st effect. (i.e.),

In effect 2- Na_2CO_3 is 5.25% wt on BLS and Na_2SO_4 is 3.88% wt on BLS

In effect 1-Na₂CO₃ is 7.23% wt on BLS and Na₂SO₄ is 2.78% wt on BLS.

- Reason of burkeite formation is due to,
 - Lower causticizing efficiency
 - Higher Na₂SO₄ in black liquor composition.

Particulars	Performance value for existing process	New performance values by retrofitting	Remarks
Na ₂ CO ₃ / Na ₂ SO ₄ % wt on BLS. at beginning of cycle	3.36 (Enter to 2 nd effect)	2.84 (By addition of spent acid from CIO ₂ plant and sodium sulphate as make up)	Decreasing in deposition rate of sodium salt led to increasing in running hours
Operation time of evaporation per cycle	5 hours	6 to 8 hours	Increasing in running hours -decreasing in down time and evaporation cost of condensate.
Time to attain product liquor after change over of body	1.25 hrs/day	0.75 to 1 hrs/day	Decreasing in down time. increasing in product liquor production.

Table 4 : Improvement in performance of MEE by controlling the water soluble scales

** Mill is adding 10 TPD as make up salts before firing a Na₂SO₄. Instread of adding there, adding in system of evaporation to control soluble scales.

Recommended practice

The most important process in keeping the heating surfaces clean by controlling the crystallization of sodium salts in black liquor. Recommendations to control soluble scale deposition,

- Maintaining low levels of Na₂CO₃ and Na₂SO₄ in the black liquor at 5% and 15% wt on BLS.
- Maintaining the Na₂CO₃ to Na₂SO₄ ratio less than three.

Control by addition of recycled chemical streams, e.g., makeup sulfate stream such as salt cake, spent acid from ClO_2 paint. Even fly ash from SRB can be added. By controlling the crystallization of black liquor, compared to present evaporation cycle time of 5 hours it get improves to 6 to 8 hours cycle time. The present and recommended cycle time of evaporation details are given in Appendix - 1.

The system overall heat transfer values are predicted by using straight line equation [5], $1/U^2 = a\theta b + d$, where a and d are constants for any given operation and U is the overall heat transfer co-efficient at any operating time θb , for possible improvement in running hours of system to 6 and 8 hrs. Assumption made during the prediction is by considering the present beharvior of system. The predicted overall heat transfer co-efficient of the system at 6hrs and 8hrs running cycle is shown in figure (10,11).

The present parameters and anticipated parameters after implementing the proposal are listed in the table below.

CONCLUSIONS

Sodium salt scaling of black liquor evaporation is an ongoing problem for many pulp and paper mills. From the available data on scaling clearly identifies the solids content of liquor where precipitation can begin. This help to control the point of precipitation of sodium salts from black liquor. The outcome of the recommendation helps the mill to improve its system availability.

REFERENCES

- 1. Wolfgang Schmidi, "Evaporator Fouling: How IPST's evaporator performance audits can help mills", IPST.
- 2. Wayne Adams, "A crystal growth system effectively reduces evaporator scaling, while providing the flexibility for future liquor chemistry changes", Kellogg brown and Root engineering, Houston, Texas.
- 3. Mark A. Rosier, "Model to predict the precipitation of burkeite in the multiple effect evaporator and techniques for controlling scaling", Tappi Journal, April, 1997.
- 4. Terry N. Adams, "Sodium salt scaling in black liquor evaporators and concentrators", Tappi Journal, June, 2001.
- 5. Max S. Peters, "Plant design and economics for chemical engineering", McGraw Hill Book Company, New York, 1958.

The net savings possible by implementation of this recommendation

Particulars	Cycle time of 5hrs	Cycle time of 6hrs	Cycle time of 8hrs
Wash Process condensate addition in WBL tank, m3/day	250	200	150
Steam requirement to evaporate this water from WBL, TPD	41.12	32.89	24.67
Equivalent cost of thermal energy, Rs. Lakh per annum	41	32.5	24.4
Time to attain the product liquor after change over of body, Hrs/day	1.25	1	0.75
Equivalent cost of down time in term of steam generation in boiler, Rs. Lakh per annum	99	79.20	59.40
Total cost per annum, Rs Lakh	140	111.70	83.80
Net saving possible per annum, Rs. Lakh	Base	27.95	55.89

				· · · · · · · · ·	to a second and a	(black	lianor
T-1-1. E. Dogover	coving cost by inc	roacing the c	vstem availabil	lov of evaporat	ion system o	I DIACK	Inquor
I able 5 : Chergy	Saving Cost by me	icasnig uic s	y stellt available	-6) ei ei er er ei ei			<u>+</u>