

# The Korean trend and Case Study for High Solids Coating regarding Coated Board(CDB) & Art Board

David Park South Korea

#### 1. The concept of high solids coating

- When solid contents is 68~69.5% at Mixer(Blending tank)
- World best: 70% at Mixer
- World best at returning tray: (Solids at Mixer  $+ 1.5\sim2\%$ ) in using slurry type GCC 95,and (Solids at Mixer  $+2.0\sim2.5\%$ ) in using slurry type GCC 60.
- ✓ Korean Art Paper's case: 68~72% at Mixer

### 2. Needs of high solids coating

Productivity Improvement by high speedy coater

- Manufacturing cost reduction of coated board
- Quality Improvement & Runability Improvement

# 3. Advantages and Drawbacks of high solids coating

- Advantage
  - Better hold-out→ optical characteristics
  - Reduced binder demand
  - Significant savings in drying energy
  - cost savings

Drying energy : +2% on coating color solids is estimated at Min. 5 USD / T of coating color\_saved on drying costs



IPPTA - The Official International Journal

Volume 28 No. 4 October - December 2016



- Higher water retention / Less additives
- Better smoothness & gloss
- Lower level of biocide required
- higher solids and less starch can reduce the need for biocides
- Dusting Problems like Hickey, Whitening in printing was improved due to using 100% slurry type of Calcium Carbonate
- Show through was improved due to Ink set-off improvement under 100% slurry type of Calcium Carbonate

#### Potential drawbacks

- Excessive blade load (blade wear)
- Rheology limitation (scratches, bleeding, etc.)

# 4. Process Factors to have an influence on high solidscoating

#### Base paper

- -. Porosity
  - -. Roughness
  - -. Basis weight

#### **Coating color**

- -. Pigments (fineness, Particle size distribution, shape, density)
  - -. Latex type / level
  - -. Low and high shear viscosity
  - -. Temperature
  - -. Synthetic thickener type / level
  - -. Water soluble polymers (CMC, starch)
  - -. Water retention capability

#### Blade geometry / coater type

- -. Bent blade is better for high solids
  - -. Blade thickness (0.457mm and 0.508mm)
  - -. Hardness of backing roll is related to SB-Latex

#### **Coater conditions**

- -. Coat weight
  - -. Speed
  - -. On/off-line

# 5. Problems & Solutions according to applyinghigh solids coating colors

#### ■ \* Problems in free of Clay

1) Poor Smoothness2) Gloss will be dropped(Opacity will be dropped)

#### ■\*Solutions

- 1. Poor Smoothness at high GCC→ Immobilization points speed up by high solids coating colors → Smoothness & Gloss will be improved→ Prevent Binder Migration → Bulky Coated Layer→ Print Mottle Improvement
  - ■\* Problems(High shear viscosity increase)
    - 1) Bad coating runability2) Water retention dropped3) Bleeding 4) Streak 5) Scratch

#### ■\*Solutions

adjusting Tg value)

# 1. Replaces Synthetic thickener by Rheology modifier

- Shear-thickening flow → Improvement by Shear-thinning flow behavior (Specialty Co-binder is better for increasing elastics of coating color)

   (It is difficult to control elastics of coating color by)
- Rheology, Water retention and Runnability improvement by uniform moisture contents and uniform particle distribution in the coating colors
- 2. Clay with small CD: MD ratio and wide particle size distribution is better for high shear rheology charateristics if little amounts of Clay is used
- × It improves bleeding & lubricant effect between GCC and this Clay because GCC size is bigger than Clay.

#### 3. SB-Latex selection of small particle size

- Rheology improvement by large ball bearing effect(Incase of too small, Mottle can be generated)
- 4. Additives demand will be decrease (OBA, Biocide)

## 6. Korean trend for Solids in 2016 against 2005-Coated Duplex Board-

| Item                          | A                                    | В                            | с                            |
|-------------------------------|--------------------------------------|------------------------------|------------------------------|
| Grammage<br>(GSM)             | 210~400                              | 210~400                      | 210~400                      |
| Color solid contents (%)/2005 | Precoat: 40% and 65%<br>Topcoat: 60% | Precoat: 60%<br>Topcoat: 60% | Precoat: 65%<br>Topcoat: 60% |
| Color solid contents (%)/2016 | Blank data will be                   | provided in prese            | entation only                |
| Type of coating               | Double Double Double                 |                              |                              |
| Annual production(MT)         | Blank data will be                   | provided in pre              | sentation only               |

### 7. Korean trend for Pigment & Binder ratio in 2001 - Coated Duplex Board-

| Item                    | A       | В     | c     |
|-------------------------|---------|-------|-------|
| CLAY No.1(PPH)          | 20~40   | 40    | 40    |
| GCC 90(PPH)/Slurry type | 60~80   | 60    | 60    |
| CLAY No.2(PPH)          | 20      | 30    | 30    |
| GCC 60(PPH)/Slurry type | 80      | 70    | 70    |
| Topcoat Binder(PPH)     | 12~13.5 | 13~14 | 13~14 |
| Precoat Binder(PPH)     | 13      | 14    | 14    |

## 8. Korean trend for Pigment & Binder ratio in 2016 -Coated Duplex Board-

| Item                    | A                                                | В   | С   |  |  |
|-------------------------|--------------------------------------------------|-----|-----|--|--|
| CLAY No.1(PPH)          | o                                                | 0   | 0   |  |  |
| GCC 95(PPH)/Slurry type | Blank data will be provided in presentation only |     |     |  |  |
| CLAY No.2(PPH)          | o                                                | 0   | 0   |  |  |
| GCC 60(PPH)/Slurry type | 100                                              | 100 | 100 |  |  |
| Topcoat Binder(PPH)     | Blank data will be provided in presentation only |     |     |  |  |
| Precoat Binder(PPH)     | Blank data will be provided in presentation only |     |     |  |  |

9. Annual Cost Reduction for Pigment & Binder in 2016against 2001 -Coated Duplex Board-

| Item                | А                                                                                                                                                                                                                    | В                                            | С                                                  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--|--|
| CLAY No.1-GCC<br>90 | 253,844USD                                                                                                                                                                                                           | 84,592USD                                    | 225,626USD                                         |  |  |
| On the basis of     | Cw: 28gsm(28/0.9=31.1/300=10.37%),Precoat: Topcoat =60%:40% Clay No. 1: 220USD/MT,GCC 95: 186USD/MT,SB-Latex: 800USD/MT A: 600,000MT X 10.37%=62,220MT B: 150,000MT X 10.37%=15,555MT C: 400,000MT X 10.37%=41,480MT |                                              |                                                    |  |  |
| Binder<br>Reduction | (26-19.5)PPH=6.5PPH<br>3,235,200USD                                                                                                                                                                                  | (28-20.5)=7.5PPH<br>923,800USD               | (28-19.5)PPH =8.5PPH<br>2,820,000USD               |  |  |
| On the basis of     | 62,220MT*0.065=4,044<br>MT*800<br>USD=3,235,200USD                                                                                                                                                                   | 15,555MT*0.075=1,166M<br>T*800USD=923,800USD | 41,480MT*0.085=<br>3,525MT*800USD=<br>2,820,000USD |  |  |
| Others              | <ol> <li>Clay No. 2 cost reduction is excluded</li> <li>Additives cost reduction is excluded</li> <li>Energy cost reduction is excluded</li> </ol>                                                                   |                                              |                                                    |  |  |

10. Case Study: Comparison between slurry type of GCC 95 and Powder type of GCC 90 -Coated Duplex Board

|                         |            | Topcoat only                                  |                                               |  |  |
|-------------------------|------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Item                    | Unit       | Clay No. 1 50% +<br>Powder type of GCC 90 50% | Clay No. 1 50% +<br>Slurry type of GCC 95 50% |  |  |
| Other conditions        |            |                                               | Same                                          |  |  |
| Solid contents at Mixer | %          | 65                                            | 66                                            |  |  |
| Smoothness              | PPS/Micron | 1.29                                          | 1.30                                          |  |  |
| Gloss                   | 75°        | 45                                            | 49                                            |  |  |
| Mottling                |            |                                               | + Side                                        |  |  |
| Coverage                |            |                                               | Improved                                      |  |  |

- 11. Korean coating recipe and others in 2016
  - Coated Duplex Board-Blank data will be provided inpresentation only



- 12. Effect according to applying high solids coating colors-South Korean Case Study (1) at Art Paper in 2010-
  - 1) Increased low cost GCC consumption against Clay and Additives consumption decreased (Brightness, Gloss, Roughness and Printability was nearly same to before and after)

| Item         | Low solids color | High solid color | Reduction | Approx. 4,822,000,000KW/Y                              |
|--------------|------------------|------------------|-----------|--------------------------------------------------------|
| Color Solids | 65~66%           | 70%              | Effect    | ( Based on Single Art paper<br>210,000mt/y )           |
| Clay         | 40               | 20               | 50%       |                                                        |
| Binder level | 13               | 11               | 15%       | Clay is higher than GCC in Binder consumption          |
| OBA          | 1.5              | 1.0              | 33%       | OBA decrease by using GCC with brightness against Clay |

- 13. Effect according to applying high solids coating colors -South Korean Case Study (2) at Art Paper in 2010-
  - 2) Drying Energy Reduction

Energy reduction because moisture contents included in GCC coating colors is lower than Clay lower

| Item                                                                                                                                                                                                                                                                                                                                  |    | Low solids color<br>(Mean value of the<br>5 Nos. ) | High solids color<br>(Mean value of<br>the 5 Nos. ) | Reduction<br>Effect         | Approx. 575,000,000/Y  ( Based on Single Art paper 210,000mt/y ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------|-----------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| Drying                                                                                                                                                                                                                                                                                                                                | #1 | 146°c                                              | 134ზ                                                |                             |                                                                  |
| Energy<br>(Air Chamber)<br>(°C)                                                                                                                                                                                                                                                                                                       | #2 | 134ზ                                               | 122°c                                               | Approx.<br>10℃              |                                                                  |
| 1. 5 hot air chamber on coating head #1 & #2 2. BP MO (3.5%) , Coated Paper MO of 5.5% 3. Same speed (550 m/min) — IHI(Japan) maintained 4. BP(200g/m2), CP(250 g/m2)- Cw 50g/m2 two-sided 5. Coating color solids : Low solids color(68%), High solids color(71%)  ■Effect calculation = 5Euro/Coating color Ton = 5*1,660*(210,000) |    |                                                    |                                                     | 000*0.33) = 575,190,000KW/Y |                                                                  |

- 14. Effect according to applying high solids coating colors -South Korean Case Study (3) at Art Paper in 2010-
  - 3)Productivity Improvement by Speed UP

Speed up by quick drying is possible because moisture contents amounts included in coating colors

|                         | Low solids<br>color                                                                                      | High solids<br>color  | Improvement          | <b>254,100 MT/Y</b> (+44,100MT/Y)           |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------|--|--|
| Item                    |                                                                                                          |                       | Effect               | ( Based on Single Artpaper<br>210,000mt/y ) |  |  |
| Coater Speed<br>(m/min) | 700                                                                                                      | 850                   | 21%                  | Speed up = + 150 m/min                      |  |  |
| Conditions              | <ol> <li>5 hot air chamb</li> <li>BP MO (3.5%)</li> <li>Drying tempera</li> <li>BP(67g/m2), C</li> </ol> | P(100 g/m2)- Cw 33g/r | & #2<br>5.5%         | 196)                                        |  |  |
|                         | ■Effect calculation = 5Euro/Coating color Ton = 5*1,660*(210,000*0.33) =                                 |                       |                      |                                             |  |  |
|                         | 575,190,00 ■ Effect Calculation Approx. 8,300KV                                                          | on = 210,000 + (21    | 0,000*0.21) = 254,10 | 00 MT/                                      |  |  |

IPPTA - The Official International Journal

Volume 28 No. 4 October - December 2016

# 15. Production Capacity & Speed in 2010 (2016) at South Korean manufacturers – Art Paper-

| Item                     | н         |        | s           |            | М           | нк        |            |
|--------------------------|-----------|--------|-------------|------------|-------------|-----------|------------|
| Item                     | PM 1      | PM 2   | Unit 1      | Unit 2     | 14          | PM 1      | PM2        |
| Design Speed             |           |        |             |            |             |           |            |
| Operating<br>Speed(2016) |           | These  | data will b | e provided | in preser   | itation   |            |
| Grammage<br>(GSM)        | 70~100(L) | -      | 70~150(M)   | 180~250(H) | 70~100(L)   | 70~100(L) | 180~250(H) |
| Color<br>solids(2016)    | 69(72)    | -      | 69(70)      | 71         | 68          | 69(71)    | 69(71)     |
| Type of coating          | Double    | Double | Double      | Single     | Double      | Double    | Double     |
| Annual production(MT)    |           | These  | data will b | e provided | d in preser | itation   |            |

### 16. Suggestion

- $\blacksquare$  Recommend to increase solid contents of coating color at Mixer step by step (+ 1~2%)
- Optimal specialty water retention agent and specialty Rheology modifier shall be applied and selected, otherwise Quality problem can be generated.
- Optimal Binder conditions shall be considered at high solids and 100% CacO3 rich structure.
- Recommend to use simple additives(Less consumption)
- Instruction from professional expert with actual experiences will be required for responding & solving lots of Quality problems showing in the process of Solid-up