Artificial Neural Network Modeling & Control For Pressurized Head Box of Paper Machine

Kumar Rajesh, Ray A.K., Mukherjee S.

ABSTRACT

A dynamic model for pressurized head box of high speed paper machine is considered. Analysis procedures enable to anticipate the automation in the head box. An optimum, minimum control effort strategy is proposed. Simulated open and closed loop response records are computed. The simulated data has been used for training the neural network. Artificial neural network(ANN) model minimizes the interaction between physical parameters. In this paper, an ANN controller has been designed for headbox and both the controllers namely PID and ANN have been compared.

Keywords: ANN, Headbox, paper machine, modeling, control,

Introduction

In paper industry, the high speed paper machine is equipped with pressurized flow box with air cushion. For complete automation, it is necessary to know dynamic processes which are associated with the incoming and outgoing stock on the paper machine wire. The pressurized headbox is shown in fig.1. The headbox arrangement will produce output interaction between air pressure and stock level. In present trend of the process industry, the complex system can not be handled with classical controller(PID). For this purpose, ANN has been designed and compare both controllers.

2. Dynamic model of pressurized headbox:

The stock flow affects the stock level and other physical parameters. The headbox model is derived in three ways as under.

2.1 When portion of box filled with stock:

1]

For equilibrium condition

$$dm_{fb}/dt = m_{in} - m_{out} - m_{ol}$$
 [

Equation[1] may be represented by the relationship

 $d\Delta m_{th}/dt = \bar{\Delta}m_{in} - \Delta m_{out} - \Delta m_{ol}$ [2] Amount of stock present in the flow box, $m_{a} = V.o \text{ or } A_{a}h.o$

or
$$\Delta m_{fb} = A_{fb} \Delta h_1 \rho_s$$

or $\Delta m_{fb} = A_{fb} h_1 \otimes v_1 \rho s; \Delta m_f = m_{fb} \otimes v_1$

*Department of Paper Technology, Indian Institute of Technology , Roorkee, Saharanpur - 247 001

Amount of inlet stock m_{in} depends on opening of inlet valve C_1 , therefore the pressure of stock before and after the valve $P_{11} \& P_{12}$ $m_{in} = m_{in}(C_1, P_{11}, P_{12})$ $Am = (am/aC_1) = AC_1 (am/aC_2)$

 $\Delta \mathbf{m}_{in} = (\partial \mathbf{m}_{in} / \partial \mathbf{C}_1) \propto \Delta \mathbf{C}_1 + (\partial \mathbf{m}_{in} / \partial \mathbf{H}) \propto \Delta \mathbf{P}_{11} + (\partial \mathbf{m}_{in} / \partial \mathbf{P}_1) \propto \Delta \mathbf{P}_{12}$ [3]

Assume that the characteristic of inlet valve of stock is linear, then

$$\begin{array}{l} (\partial m_{in}/\partial C_{1}) \infty = m_{inmax}/C_{1max} ; \ (\partial m_{in}/\partial C_{1}) \infty \\ \Delta C_{1} = (m_{inmax}/C_{1max}) \Delta C_{1} \\ (\partial m_{in}/\partial C_{1}) \infty \Delta C_{1} = m_{inmax} \mu_{1} \end{array}$$
[4]

Flow of stock through the regulating valve amount to

Flow of stock from slice lip

$$\begin{split} & \textbf{m}_{out} = \ \textbf{m}_{out}(\textbf{C}_2, \ \textbf{h}_{1,}\textbf{P}), \ \textbf{C}_2 \ \text{ is the slice} \\ & \text{opening} \\ & \Delta \textbf{m}_{out} = (\partial \ \textbf{m}_{out} / \partial \ \textbf{C}_2) \propto \Delta \textbf{C}_2 + (\partial \ \textbf{m}_{out} / \partial \ \textbf{h}_1) \propto \\ & \Delta \textbf{h}_1 + (\partial \ \textbf{m}_{out} / \partial \ \textbf{P}) \infty \Delta \textbf{P} \qquad [7] \end{split}$$

 $\begin{array}{l} Flow \mbox{ of stock through the slice } \\ m_{\mbox{\tiny out}} = A_{\mbox{\tiny lip}}.C_{\mbox{\tiny d2}} \sqrt{2} \rho_s(h_1g \ \rho_s + P) \ (\partial m_{\mbox{\tiny out}}/\partial h_1) \infty \\ \Delta h_1 = 1/2 \ m_{\mbox{\tiny out}} \infty \rho g(h_1 \ \infty / h_1g \ \rho_s + P) \ \upsilon_1[9] \\ (\partial m_{\mbox{\tiny out}}/\partial P) \infty \Delta P = 1/2 \ m_{\mbox{\tiny out}} \infty (P \ \infty / h_1g \ \rho_s + P) \\ P' \qquad \qquad [10] \\ Flow \ of \ stock \ through \ overflow \\ is \end{array}$

$m_{ol} = C_{d3} b \rho_s \sqrt{2g(h_3)^{1.5}}$	
$\Delta m_{\rm ol} = 3/2 C_{\rm d3} b \rho_{\rm s} h_3 \propto \sqrt{2g h_3 \Delta h_3 / h_3 \propto}$	
or $\Delta m_{ol} = 3/2 m_{ol} \approx v_3$	[11]

Substituting equations from 1 to 11 in equation 2,

 $d(V_1 \rho_s v_1)/dt = [m_{inmax} \mu_1 - 1/2 m_{in} \rho_s g(h_1 \omega / \omega)]$ $P_{11}-P_{12}$) $\upsilon_1-1/2$ m_{in}^{∞} (P ∞ / $P_{11}-P_{12}$) P' $m_{outmax}\mu_2 - 1/2 m_{out} \propto \rho g(h_1 \propto / h_1 g \rho_s + P) \upsilon_1$ - $1/2 m_{out} \propto (P \propto / h_1 g \rho_s + P) P' - 3/2 m_o \propto v_3$ or $V_1 \rho_s dv_1/dt = [m_{inmax}\mu_1 - 1/2 m_{in} \propto \rho_s g(h_1 \propto$ $(P_{11}-P_{12})v_1-1/2m_{in}\infty(P\infty/P_{11}-P_{12})P'$ $-1/2 m_{out} \propto \rho g(h_1 \propto / h_1 g \rho_s + P) \upsilon_1 - 1/2 m_{out} \propto$ $(P \propto / h_1 g \rho_s + P) P' - 3/2 m_{ol} \propto v_3$ $(V_1 \rho_s / m_{inmax}) * (dv_1 / dt) = [\mu_1 - (m_{in} \infty / m_{inmax})]$ $1/2 \rho_{s} g(h_{1} \infty / P_{11} - P_{12}) \upsilon_{1} - (m_{in} \infty / m_{inmax})$ $1/2(P_{\infty}/P_{11}-P_{12})$ P'-1/2 $\rho g(h_{1}^{\infty}/h_{1}g \rho_{s}+P$)($m_{out} \infty / m_{outmax}) v_1$ -1/2 m_{out}^{∞} (P ∞ / $h_1g \rho_s$ +P) P'-3/2 m_{ol}^{∞}/m v_3] or $T_{fbl}dv_1/dt = [\mu_1 - (w_1K_{1v1} + w_{2K2v1}) \mu_1 -$ $(\mathbf{w}_1\mathbf{K}_1\rho + \mathbf{w}_2\mathbf{K}_2\rho)\mathbf{P}' - 3/2\mathbf{w}_{31}\mathbf{v}_3]$ [12]

Considering that $h_1 = h_0 + h_3$; we have $\Delta h_1 = \Delta h_3 = 1$, so $\upsilon_3 = (h_1 \infty / h_3 \infty) \upsilon_1$ or $a_{13} \upsilon_{1,2}$ Equation 12 can be written as $T_{fb1} d\upsilon_1 / dt = [\mu_1 - (w_1 K_{1 \nu 1} + K_{2 \nu 1}) \mu_1 - (w_1 K_1 \rho + w_2 K_2 \rho) P' - 3/2 w_{31} a_{13} \upsilon_1]$ Or $T_{fb1} d\upsilon_1 / dt + A \upsilon_1 = \mu_1 - BP'$ [13]

2.2 Material balance for overflow system:

 $dm_{cb}/dt = [m_{oll} - m_{ol2}]$ or $m_{ch} = A_{ch}h_{ch}\rho_s = V_{ch}\rho_s$ [14] $d\Delta m_{ch}/dt = \Delta m_{ol} - \Delta m_{ol2}$ $\Delta m_{ch} = A_{ch} h_{ch}^{\infty} \rho_s \upsilon_2$ or Flow of stock, $m_{ol2} = A_{op}C_{d4}\sqrt{2\rho s(h_{ch}\rho_{s}g+P)}$ $\Delta m_{_{ol2}}{=}1/2~m_{_{ol2}}{\infty}~\rho_{_s}g(h_{_{ch}}{\infty}~/~h_{_{ch}}~g~\rho_{_s}{+}P~)$ $v_2 + 1/2 m_{ol2} \propto (P \propto / h_{ch} g \rho_s + P) P'$ [15] Substituting the values of $\Delta m_{ol} \Delta m_{ol2,\&}$ Δm_{ch} into [14]. $d(V_2 \rho_s v_2)/dt = 3/2m_{ol} \approx v_3 - 1/2 m_{ol} \approx (P \approx /$ $h_2 g \rho_s + P P' - 1/2 m_{ol2} \propto \rho_s g(h_{ol} \propto / h_{ol} g \rho_s + P)$ υ_{2} or V₂ $\rho s(dv_2/dt) = 3/2m_{o1} \approx a_{13}v_1 - 1/2m_{o12} \approx$ $(P_{\infty}/h_{ch}g\rho_{s}+P)P'-1/2m_{ol2}^{\infty}\rho_{s}g(h_{ch}^{\infty}/h_{ch}g)$ $\rho_{s}+P$) υ_{2} or $(V_2 \rho s/m_{ol2} \infty)\rho_s (dv_2/dt) = [3/2m_{ol2} \infty)$ $a_{_{13}}\upsilon_{_1}$ -1/2 $m_{_{ol2}}\infty$ (P ∞ / $h_{_{ch}}g$ $\rho_{s}{+}P)$ P'-1/2 $m_{ol2} \propto \rho_s g(h_{ch} \propto / h_{ch} g \rho_s + P) \upsilon_2] / m_{ol2} \propto$

or $T_{fblo} dv_2/dt = w_{21}v_1 - K_3\rho P' - K_{1v2}v_2;$ or $T_{fblo} dv_2/dt + K_{1v2}v_2 = w_{21}v_1 - K_3\rho P'$ [16]

2.3 Material balance for air cushion:

 $\begin{array}{l} m_{air} = m_{sup} - m_{rem} \\ \text{or } d\Delta m_{air} / dt = \Delta m_{sup} - \Delta m_{rem} \end{array}$ [17]

$m_{air} = V_3 \rho_a$	[18]
$V_3 = V_0 - V_1 - V_2$	[19]
$\Delta m_{air} = \rho_a \infty \Delta V_3 + V_3 \infty \Delta \rho_a$	[20]

Putting the value of V_3 in equation[20], then

 $\Delta m_{air} = \rho_a \infty (\Delta V_1 - \Delta V_2) + V_3 \infty \rho_a \Delta P / P \infty$ or $\Delta m_{air} = -\rho_a \infty \Delta V_1 - \Delta V_2 \rho_a \infty + V_3 \infty \rho_a P'$ [21]

$$\begin{split} & \text{Loss of air through valve } C_{5\&}C_6 \\ & m_{sup} = A_{c5}K_5 \sqrt{2}\rho_a(P_{51}-P_{52}); \\ & m_{rem} = A_{c6}K_6 \sqrt{2}\rho_a(P_{61}-P_{62}) \\ & \Delta m_{sup} = m_{supmax}. (\Delta C_5/C_{5max}) - 1/2 \ m_{sup}^{\infty}. (P_{52}^{\infty} / P_{51}-P_{52})P' \text{ if valve } C_5 \text{ is linear.} \\ & \Delta m_{sup} = m_{supmax}. \mu_5 - 1/2 \ m_{sup}^{\infty}. (P_{52}^{\infty} / P_{51}-P_{52})P'\Delta m_{rem} = m_{remmax}. (\Delta C_6/C_{6max}) - 1/2 m_{rem} \\ & \infty. (P_{61}^{\omega}/P_{61}-P_{62})P' \\ & \text{Or } \Delta m_{rem} = m_{remmax}. \mu_6 - 1/2 m_{rem}^{\infty}. (P_{61}^{\infty}/P_{61}-P_{62})P' \\ & C_6 \text{ is constant, so } \mu_6 = 0; \\ & \Delta m_{rem} = -1/2 \ m_{rem}^{\infty}. (P_{61}^{\omega}/P_{61}-P_{62})P' \\ \end{split}$$

Putting the values of $\Delta m_{air.} \Delta m_{sup}$, Δm_{rem} in equation [5.22], we get $d/dt(\rho_a^{\infty} \Delta v_3 + v_3^{\infty} \Delta \rho_a) = m_{supmax.} \mu_5 - (1/2 m_{sup}^{\infty}. (P_{52}^{\infty}/P_{51} - P_{52} - 1/2 m_{rem}^{\infty}. (P_{61}^{-} N_{62}^{-})P'$ Or $d/dt(-\Delta v_1 \rho_a^{\infty} - \Delta v_2 \rho_a^{\infty} + v_3 \rho_a P') = m_{supmax.} \mu_5 - (1/2 m_{sup}^{\infty}. (P_{52}^{\infty}/P_{51} - P_{52} - 1/2 m_{rem}^{\infty}. (P_{61}^{\infty}/P_{61} - P_{62})P'$

 $T_{air}dP'/dt = w_4(k_4+k_5)P' = \mu_5 + T_{tv1}d_{u1}/dt + T_{tv2}du_2/dt$ [24]

Dynamic process in the flow box under examination may be properly understood with the help of equations(Mardon) $T_{tbl}du_l/dt+Au_l=\mu_l-BP';$ $T_{tblo}du_l/dt+k_{1v2}u_2=w_{21}u_lk_{3p}P';$ $T_{air}dP'/dt+w_4(k_4+k_5)P'=\mu_5+T_{tv1} d_{ul}/dt+$ $T_{tv2}du_l/dt$

These equations may be represented in the following form

 $\begin{array}{ll} T_{\text{fbl}} du_1 / dt + Au_1 = \mu_1 - BP' \quad [25] \\ T_{\text{fbl}} du_2 / dt + C \ u_2 = Eu_1 DP' \quad [26] \\ T_{\text{air}} dP' / dt + F \ P' = \ \mu_5 + \ T_{\text{tv1}} \ d_{\text{u1}} / dt + \ T_{\text{tv2}} \\ du_2 / dt \quad [27] \end{array}$

In order to determine the transition process as originating irregulating channel of flow box. It is necessary to solve the set of equation w.r.to P' and u. The equation can be written as $(T_{fbl}s+A)u_l=\mu_l \cdot BP'$ $Or u_l=\mu_l/(T_{fbl}s+A) BP'/(T_{fbl}s+A)$ If Q=1/ $(T_{fbl}s+A)$; R=B'/ $(T_{fbl}s+A)$, or **Then u_l=Qµ_l-RP'** [28] Equation[5.27] can be written as $(T_{air}s+F)P'=\mu_5+T_{tv1}du_1/dt+T_{tv2}du_2/dt$

 $\begin{array}{ll} From \ equation[\ 5.26] \\ (T_{\ tblo}s+C)u_2=Eu_1DP' \\ Or \ [(T_{\ tblo}s\ s\ +C)(T_{\ tv2}s)]=\ (T_{\ tv2}sE)u_1 \\ (T_{\ tv2}SD)P' \ [29] \end{array}$

 $\begin{array}{ll} From \ equation \ [5.27 \] \\ (T_{tv2}s)u_2 = (T_{tv1}s)u_1 - (T_{air}s + F)P' + \mu_5 \\ Or \ [(T_{fblo} \ s \ + C) \ (T_{tv2}s)]u_2 = [(T_{fblo} \ s \ + C)]P' + \\ (T_{tv1})]u_1 - \ [(T_{air}s + F) \ (T_{fblo} \ s \ + C)]P' + \\ \mu_5(T_{fblo}s + C)] \ [30] \end{array}$

 $\begin{array}{l} Subtracting equation [30] from [29] \\ [T_{v_2}sE-(T_{fblo} \ s \ +C) \ (T_{v_2}s)]u_1-[T_{v_2}sD-(T_{air}s+F) \ (T_{fblo}s+C)]P'+\mu_5(T_{fblo}s+C) \\ or \ P'=[\ T_{t_{v_2}}sE+-(T_{fblo} \ s \ +C) \\ (T_{v_1}s)]u_1/[T_{air}T_{fblo}s^2+(T_{air}C+T_{v_2}D+T_{fblo}F) \\ s+FC] \\ + \ \mu_5(T_{fblo} \ s \ +C)/ \ [T_{air}T_{fblo}s^2 \\ +(T_{air}C+T_{v_2}D+T_{fblo}F)s+FC] \\ \end{array}$

Then equations can be written as $P'=xu_1+y\mu_5$ [32] $U_1=Q\mu_1$ -RP'[33]

From equations [32 & 33], both values $u_1 \& P'$ are related with process conditions. Variable opening of valves μ_1 or μ_5 affect regulation in the valve of these variables. Because they are related with the relationship(mardon) $V_1=Q'(s)\mu_1+R'(s)\mu_5$ [34] $\rho_1=x'(s)\mu_1+Y'(s)\mu_5$ [35]

Simulation results:

The simulation results of equations 34 & 35 are shown in figs.2, 3, 6,& 7, closed loop control system has also been designed with the help of maltab software, when $\mu_1=0, \mu_s=0$.

3. Development of ANN controller for the case of air pressure and level in the headbox:

For the case of air pressure(rho, ρ) and level(neu/neo, V) ,design the ANN controller with following ANN parameters are as shown in table 1. The training programmes for the same is also developed.

4.Comparison of simulated data between PID and ANN controller:

After simulating the process, data is used for training the network, the tables 2 &3 show the statistical data and errors between PID and ANN data. The plots show the errors between PID and ANN data with a given set point. Both the controllers show over damped system. Statistical data are also depicted in

Fig.-2 Characteristics of pressurized flow box when μ_s =0,

Change in level(neo)

100

Time

Time characteristics of pressureed flow box

Change in pressure(/ho)

120 140 160 180

200

1.2

0.8

Dalay!

1 0.6

asuodsa

Output

0.2

-0.2

20

40 60 80

Fig. 4 Closed loop system for V₁, when $\mu_5=0$

Fig.-6 Unit set point response for closed loop system for V_1 , when $\mu_5=0$

Fig.-8 Comparison between classical and ANN data for V₁, when $\mu_5=0$

Fig.-5 Closed loop system for ρ_1 , when $\mu_5=0$

Fig.-10 Comparison between classical and ANN data for $\rho_{\scriptscriptstyle 2}$, when $\mu_{\scriptscriptstyle 1}\text{=}0$ TABLE: 1

Parameters	V 1	ρ_1	P ₂
Input nodes	2	2	2
Hidden nodes	5	5	5
Output nodes	1	1	1
Activation function	Tansig	tansig	Tansig
Algorithm	Gradient descent	Gradient descent	Gradient descent

TABLE:2 COMPARISON BETWEEN PID CONTROLLER FOR V, p

Specifications	PID value for (V)	PID value for(ρ)
Max. overshoot	22.7%	6.8%
Delay time	5.4 sec.	2.14 sec.
Min.	0	0
Max.	1.227	1.068
Mean	.5174	.8179
Median	.4415	1
Std.	.5122	.3852

TABLE:3

V_1	Min. error	0551
	Max. error	.0852
	Average error	.0242
ρ ₁		
	Min. error	0009
	Max. error	.0165
	Average error	.0038
ρ ₂		
	Min. error	0912
	Max. error	.082
	Average error	0008

IPPTA J. Vol.22, No. 2, April-June., 2010 106

tables. Which show that the ANN controller gives approximately the same value as the conventional controller provides.

5.Conclusions:

To demonstrate the effectiveness of the design procedure presented herein, a model of a paper making machine headbox was considered. The objective of the study was to improve regulation with compensatory increases or reductions in stock level with no overshoot condition. The comparison between PID and ANN is more clearly shown in figs. It is found that except two values of ANN other tally very closely. Therefore it can be concluded that that the ANN controller can be used for MIMO system successfully.

References:

- Baughman D.R., and Liu Y.A., Neural networks in bio-processing and chemical engineering, Academic press limited, oval road, London, pp 40-47, 1995.
- 2. Demuth H. and Beale M., Neural networks toolbox users guide, mathworks,1997.
- Desmond Yan and Mehrdad Saif, Neural network based controllers for non-linear systems, CH3243-3, IEEE, pp.331-336, 1993.
- 4. Mardon, J., A theoretical and experimental investigation into the stability & control of paper machine headboxes, Papier och tra 48(1):3;48(5) 301,49(4a):189 (1966/7).
- 5. Nancy J. Sell P.E, Process control fundamentals for the pulp and

paper industry, TAPPI process control textbook, Tappi Press, Atlanta,pp.428, 187,GA,1995.

Model of pressurised headbox: m_{th}=Amount of stock present in the flow box m_{in}=Amount of incoming stock m_{out}=Amount of outgoing stock m_a=Stock flow through the overflow line t=time A_b=Average cross-section area of flow box h₁=hydrostatic pressure ρ_s =Density of suspension ρ_a =Density of air v_1 =Relative deviation of level P=Air pressure H=Height of stock to the axis of valve μ_1 =Relative change in the opening of inlet valve A_c=Cross section of valve opening C_{d1} =Discharge coefficient C₁=Inlet valve P_{11} =Pressure before entering valve C_1 P_{12} =Pressure after valve C_1 P'=Relative change in pressure of air C₂=Slice opening A_{lin}=Cross-sectional area of lip opening C_{d2}=Discharge coefficient C_{d3}=Discharge coefficient b=Width of air flow h₂=Height of overflow T_{fb}=Time constt. For flow flow box for level of stock in the box $w_1 w_2 w_3 =$ load factors $K_{1v1}, K_{2v1}, K_{1\rho}, K_{2-\rho}, K_{1v2}, K_{3\rho} = Constant$ factors depending on the speed of the machine m_{cb} = Amount of stock present in the channel

 $m_2 = Flow of stock$ A_{ch} = Average area of cross-sectional of the channel h_{ch} = Height of stock level in channel V_{ch}=Volume of channel A_{op} =Cross-sectional area of outlet pipe T_{fblo} =Time constt. For flow box stock level in the overflow pipe W_{21} =Factor depending on v_1 m_{air} = Amount of air present above the stock level in the flow box m_{em}m_{rem}=Amount of air supplied and removed from the flow box V₃=volume of air above stock level in the flow box $A_{c5} A_{c6}$ =Cross-sectional area of overflow valves C5, C6 K₅K₆=loss factors $P_{51}P_{52}$ =Inlet & Outlet pressure of valve C, P₆₁,P₆₂=Inlet & Outlet pressure of valve T_{air}=Time constt. Of flow box for air cushion w₄=Load factor T_{tv1} , T_{tv2} =Time constt. For turbulence in the channel depending on $v_1 v_2$