

Multilayer Liner and Machine Technology

Jari Kataikko

Paper Technology Manager Board and Paper Mills Business Unit

Containerboard

Valmet Technologies Ltd

Valmet Asia Pacific and India

Containerboard Market and Grades

Containerboard Machine Technology

Latest Innovations (selected ones)

Containerboard References (only shown in Saharanbur)

Valmet >

Valmet >

Valmet Technologies Ltd

Progress built on 220 years of industrial history

From cloth making to high-tech processes

Today Valmet is the market leader serving a global customer base

- Market's widest • offering combining process technologies, services and automation
- Research and development spend FUR 64 million in 2017

Market leadership

- Leading market position in all markets
- Pulp #1-2
 - #1-3 Energy

#1

- Board
- #1 Tissue #1
- Paper
- Services #1–2
- Automation #1-3 •

Strong global presence

- 33 countries
- 120 service centers
- 87 sales offices •
- 36 production units •
- 16 R&D centers •
- 12,000 professionals ٠ 8,000 EMEA 1,700 China 1,200 North America 700 Asia-Pacific 500 South America

Leader in sustainability

- Sustainability 360° • agenda
- Four consecutive • years in Dow Jones Sustainability Index
- Three consecutive years in Ethibel Sustainability Index Europe
- A- rating in CDP climate program 2017

Strong, global presence is a good platform for growth

Over 120 service centers, 87 sales offices, 36 production units, 16 R&D centers

Full scope offering for the pulp and paper industry

Technologies

- Wood handling
- 2 Heat and power production
- 3 Chemical pulping
- 4 Chemical recovery
- 5 Pulp drying

- 6 Recycled fiber
 - Mechanical fiber
 - Stock preparation
 - Board and paper making
- 10 Tissue making

Automation

- Distributed Control System (DCS)
- Performance solutions
- Quality Control System (QCS)
- Profilers

•

- Analyzers and measurements
 - Industrial internet solutions
- Automation services
- Process simulators
- · Safety systems and solutions

Services

- Mill and plant improvements
- · Spare and wear parts
- Paper machine clothing and filter fabrics
- Roll services
- Services for evaporation plants, power and recovery boilers
- Services for environmental equipment

Valmet's customer focused research and development work

Valmet's R&D focus areas

- Advanced and competitive technologies and services
- Raw material, water and energy efficiency
- Promotion of renewable materials

16 research and development centers

Research partnerships with leading global universities and research institutes

EUR 64 million R&D spend in 2017

1,400 protected inventions

Valmet Paper Technology Centers

Creative environment for paper and board development

Paper & Board Technology Center

Jyväskylä, Finland - 2 pilot machines Järvenpää, Finland – Finishing technology Inkeroinen, Finland – Fiber technology

- Fully equipped analysis laboratory
- Extensive expert network
- Joint development
- Customer pilot trials
- Training

Valmet in Asia Pacific and India

Local presence in Asia Pacific

24 locations, over 750 employees working for automation, pulp, energy and paper industries

Local presence in India

Serving the pulp, paper and energy industries

Containerboard Market and grades

Valmet

New Container board machines

Towards lighter basis weights and higher speeds

- More paper at the same raw material cost and higher speed
- Lower transportation costs
- Economic packaking
- Less packaking waste

Technology Part focusing on TL and RCF

Containerboard Machine Technology Focus: Fluting & Testliner

High quality containerboard – machine sections effect to board quality parameters

Basis weight profileCD MD RESXXXXX XXXXXX XXXX XXXXXX X	0	Furnish	Short sircu- lation	Headbox	Forming	Pressing	Drying	Sizing	Calen- dering
Moisture CD MD RESXX X XXX X X XXX X XXXX 	Basis CD weight MD profile RES	X X	X XXX XX	XXX XX XXX	X X XX			X X X	
Thickness CD MD RESXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXFormationXXXXXXXXXX </td <td>Moisture CD MD RES</td> <td></td> <td>X X</td> <td>XX X XX</td> <td>XX X XX</td> <td>XXX XX XX</td> <td>XXX XXX XX</td> <td>X X</td> <td></td>	Moisture CD MD RES		X X	XX X XX	XX X XX	XXX XX XX	XXX XXX XX	X X	
FormationXXXXXXXXXXXXXXXXSmoothnessXXXXXXXXXXXBurst strengthXXXXXXXXXXXXXXWater absorptionXXXXXXXXXXXXXXXXCMT, RCT, SCTXXXXXXXXXXXXXXXXXInternal bondXXXXXXXXXXXXXXX	Thickness CD MD RES		XXX X	XXX XX XX	X X X	XXX XX XX			XXX XXX XX
SmoothnessXXXXXXXXXXBurst strengthXXXXXXXXXXXXWater absorptionXXXImage: Solution of the solution	Formation	XXX	Х	XX	XXX				
Burst strengthXXXXXXXXXWater absorptionXXXCCCXXXXXXXXXXXXXXXCMT, RCT, SCTXXXXXXXXXXXXXXXXXXXXXXXXXXInternal bondXXXXXXXXXXXXXXXXXXXXXXXX	Smoothness	Х		Х	Х	XX	Х	XX	XXX
Water absorptionXXXImage: CMT, RCT, SCTXXXImage: CMT, RCT, SCTXX	Burst strength	XXX		Х	XX	Х		XX	Х
CMT, RCT, SCTXXXXXXXXXXXInternal bondXXXXXXXXXXXXXXXX	Water absorption	XXX					Х	XXX	
Internal bond XXX X X XX XX X X XXX	CMT, RCT, SCT	XXX		Х	XX	Х	Х	XX	Х
	Internal bond	XXX		Х	XX	Х	Х	XXX	

Headbox

Valmet's OptiFlo headbox product family

The solution for your specific papermaking needs

- Fit for purpose: all applications and paper machine sizes available
- Robust and modular construction, with high quality and cost efficiency

OptiFlo Fourdrinier Headbox

OptiFlo Layering Fourdrinier Headbox

OptiFlo Gap Headbox

OptiFlo Layering Gap Headbox

OptiFlo Fourdrinier ejector type of dilution

Sets new levels for basis weight CD profiling

- Ejector type profiling feed straight to turbulence generator tubes:
- ✓ 30% better CD control response accuracy and power
- ✓ 50% lower dilution line pumping energy consumption
- Extreamly compact and clean headbox design

Forming section

Multi-Fourdrinier ply selection

1-ply	2-ply	3-ply	4-ply	5-ply
Containerboard				
Corrugating medium	Kraftliner	Recycled linerboard (testliner)		
	White top liner	White top liner		
	Recycled linerboard (testliner)			

1-ply	2-ply	3-ply	4-ply	5-ply
Cartonboard				
Solid bleached board		Folding boxboard	White lined chipboard	White lined Chipboard
		Liquid packaging board		
		White lined chipboard		
		Solid bleached board		

2-ply multi-Fourdrinier, containerboard grades using recycled fibres

- Benefits:
 - Good solution especially for low basis weights
 - High dewatering capacity
 - Economical investment
 - Good strength properties

Basic definitions in forming

- Dewatering
 - Drainage capacity
 - Turbulence
 - Table activity
 - Retention
- Formation
 - Flocculation tendency
 - Shear forces
 - Turbulence
 - Table activity
 - Retention

Activity - Magnitude

Low

Medium

High

- Effecting factors:
 - Foil angle
 - Foils width
 - Vacuum
 - Wire tension
 - Machine speed
 - Jet to wire speed ratio
 - Headbox consistency

Factors influencing dewatering and formation

- Low headbox consistency
 - flocculation tendency decreases
 - shear strength of fiber network decreases
- More table activity
 - more deflocculated stock
- Increased shear forces
 - more deflocculated stock
- Increased drainage
 - better formation, smaller floc sizes
- Higher freeness
 - usually worse formation (response to table activity decreases)
- Longer fibers
 - more flocculated stock
- Higher fiber coarseness
 - more deflocculated stock

2-ply forming section with on-top-Fourdrinier

Containerboard machine, consistencies

3-ply multi-Fourdrinier, containerboard grades using kraftpulp, OCC and/or virgin fibers

Benefits:

- Compact design
- High dewatering capacity
- Optimum furnish selection for each ply
- Good surface brightness (layer purity/coverage)
- Delivers gentle dewatering and the highest strength

Press section

High quality containerboard

Effect of press section

0	Furnish	Short sircu- lation	Headbox	Forming	Pressing	Drying	Sizing	Calen- dering
Basis CD weight MD profile RES	X X	X XXX XX	XXX XX XXX	X X XX			X X X	
Moisture CD MD RES		X X	XX X XX	XX X XX	XXX XX XX	XXX XXX XX	X X	
Thickness CD MD RES		XXX X	XXX XX XX	X X X	XXX XX XX			XXX XXX XX
Formation	XXX	Х	XX	XXX				
Smoothness	Х		Х	Х	хх	Х	XX	XXX
Burst strength	XXX		Х	XX	х		XX	Х
Water absorption	XXX					Х	XXX	
CMT, RCT, SCT	XXX		Х	XX	x	Х	XX	Х
Internal bond	XXX		Х	XX	x	Х	XXX	

Press section dewatering

UB dewatering

- Water pressed from sheet to felt
- Felt carries the water to the uhle box where it is removed by vacuum
- Open, heavy weight felts
- Slow machines (pulp, packaging)
- NA

Nip dewatering

- Water pressed from sheet through the felt to roll grooves or holes
- Water removes out of the roll with the help of centrifugal force
- Dense and/or light weight felts
- Higher speed machines (P&W, tissue, higher speed packaging)
- EMEA, China

OptiPress Center

High dewatering capacity

OptiPress Linear

High dewatering capacity

Two shoe presses for high dryness Four felts for excellent water removal and dryness Compact multi-fuctional uhle box for optimized felt dewatering

Efficient belt roll doctoring and savealls

Board pressing concepts

With OCM technology (no cantilevering)

Drying section

OptiRun main concepts

Runnability systems for high-speed machines

Excellent sheet runnability Effective tail threading Less breaks Draw reduction from press section

Operation principle of HiRun runnability system

Maximal web stability

Surface sizing

OptiSizer product family

Size application solutions for specific papermaking needs

- Fit for purpose: all application methods and paper machine sizes available
- Robust and modular construction,

Surface sizing development

OptiSizer Film – main components

Wide application area

 Also possible to have a multi-purpose sizer with coating and surface size application

Optisizer Spray application principles

Comparison of control parameters

Accurately controlled size amount is important

• Spray

- Accurate control of wet film by adjusting feeding pressure
- Fast response to changes in solid content due to low volume system
- Film
 - Reasonable control possibilities
- Pond
 - Size solids content is the only control parameter

OptiSizer Film vs Spray for Rec. Containerboards

OptiSizer Film - Sizer with film application

- State-of-the-art size press
- Limited strength for high basis weight
- Low starch solid and higher steam consumption
- Cleanliness issues with recycled fibers
- Rolls cover and consumable costs relatively high
- Need a web break to change rod and rod bed.

OptiSizer Spray - Sizer with film with spray application

- Revolutionary sizing process
- Adjustable strength properties for recycled board
- High starch solid (12 14%), lower steam consumption, higher production
- Clean starch circulation with noncontact application
- Minimal consumables and long roll lifetimes
- Nozzle module could be change during the turn-up

Valmet automation solutions and services (MCS,QCS, DCS)

Remote online monitoring in addition to site support Valmet Performance Center access to the expertise you need

Latest Innovations

Valmet >

Latest Technology for Board making OptiFlo layering Headbox

Unique technology that uses a thin layer of water as a headbox wedge to minimize flow disturbances between stock layers which allows the forming section to consolidate the stratified paper structure.

Unique technology that uses a thin layer of water as a headbox wedge to minimize flow disturbances between stock layers which allows the forming section to consolidate the stratified paper structure.

Water Layering Technology Opportunities

Optimal and Flexible Dosaging

Water Layering Technology Opportunities Additional Features

New layering technology provides possibilities to adjust quality and strength properties. Cost savings can be achieved by using different furnish qualities, cheaper raw materials, and functional wet end additives between the layers.

Using headbox for optimal chemical dosaging

Improved strength: Optimal feeding point for active starch interaction

Conventional starch configuration

Starch configuration with Aqua technology

Water Layering Technology Opportunities

Optimal and flexible dosaging \rightarrow what else can we do?

Water Layering Technology

Optimal and flexible dosaging for improved quality

Excellent layer purity Vacuum Assisted Forming Board with OptiFlo

Technology features:

- Stabilizes jet landing
- prevents stock jump

Benefits:

- Improve layer coverage
- High initial dewatering capacity
- Controlled fiber mat formation

VacuBalance vacuum-assisted forming board

Comparison with traditional forming board

VacuBalance vacuum-assisted forming board

Patent pending

- Minimized pulsation
- Minimized stock jump
- Very high dewatering capacity
- Very wide operation window
- Excellent for layering

- Sensitive for stock jump
- Heavy pulsation
- Low dewatering capacity
- Fixed operation window
- Not suitable for layering

Effect of headbox & former on layer purity

Conventional headbox and non-suitable forming board

Effect of headbox & former on layer purity

Water Layering and Vacuum assisted forming board technologies

Water Layering Technology together with Vacuum assisted forming board produces smooth forming table activity without mixing of layers.

30% less starch needed with new Aqua layering technology

- Flexibility
- Aqua has a rapid starch feeding response, unlike conventional technology with a long delay time
- With Aqua layering technology, strength targets are achieved with almost 30% lower starch dosing
- Aqua layering enables totally new ways to utilize raw materials, like refined OCC, refined broke, selected fiber fractions or even reject.

This gives revolutionary improvement possibilities

Reference case: revolutionary example:

Signinificant cost savings and method of optimizing mill performance

- Reject from WWTP chemical flotation is returned directly to the Aqua layer
- This has offered totally new optimization possibilities on the furnish side
- Next phase is to utilize fines and fiber from white water

Optisizer Hard

OptiSizer product family

Size application solutions for specific papermaking needs

- Fit for purpose: all application methods and paper machine sizes available
- Robust and modular construction,

OptiSizer Hard - benefits

OptiSizer Film - Sizer with film application

- State-of-the-art size press
- Limited strength for high basis weight
- Issues with runnability and sheet breaks
- Cleanliness issues with recycled fibers
- Rolls cover and consumable costs relatively high

OptiSizer Hard - Sizer with hard nip rolls and spray application

- Revolutionary sizing process
- Excellent strength properties for recycled board
- Uncompromised runnability
- Lower web tension
- Clean starch circulation with noncontact application
- Minimal consumables and long roll lifetimes

High nip pressure increases strength

Sheet wetting = good penetration ≠ good strength

Low pressure

- Fiber to fiber distance relatively large
 - Large porous volume
 - Small pressure for liquid diffusion
- \rightarrow Starch in pores, not in fiber junctions
- → Penetration of starch is small

Improves surface strength

High pressure

- Fiber to fiber distance relatively small
 - Small porous volume
 - Large pressure for liquid diffusion
- → More starch in fiber junction points
- \rightarrow Better starch penetration

Improves surface and internal strengths

SCT strength tests internal strength of paperboard

- SCT testing applies compressive stress across the sheet thickness
- For good burst results, internal strength needs to be improved
- → Better starch penetration needed

SCT testing

Paperboard after compressive failure

Delaminated area -

Source (paperboard specimen photo): http://www.rbi.gatech.edu/sites/default/files/documents/Pr edicting%20Box%20Compression%20Strength_3.pdf

Burst tests surface strength of paperboard

Maximum stress at surfaces

- Burst testing
 - Maximum stress at the surfaces
 - Compression stress at the bottom
 - Tensile/pulling strength at the top
- → For good burst results, surface strength need to be improved

Comparison of sizer concepts

Pond sizer [Pros]	Optisizer Film [Pros]	Optisizer Hard + Spray [Pros]		
+ Good strength properties	+ No need for overdrying	+ No need for overdrying		
+ Good evenness of size	+ Good size coverage	+ Small starch recirculation		
+ Simple design	+ Controllable size amount	+ Controllable size amount		
+ Only wear parts roll covers	+ Large viscosity window	+ No wear of rods / rod beds		
	+ Higher solids possible (typical 10 – 15 %)	+ Excellent strength properties		
		+ Hard roll covers \rightarrow long running times		
		+ Lower web tension levels		
Pond sizer [Con]	Optisizer Film [Con]	Optisizer Hard + Spray [Con]		
 Web wrinkling and tension problems → poor runnability, sheet break sensitivity 	- Rod & cover wear with recycled base	- For high solids contents and added sizing agents there is risk of spray nozzle blocking and spray beam contamination		
 For pond stability, starch viscosity/solids limited 	- Rod blocking with contaminants	 High size viscosities (> 50 mPa*s) not possible 		
 High wetting → large steam consumption 	- Large amount of starch recirculation	 Challenges if color dyes are used in size press due to spray evenness if small wet film is desired 		
 High size recirculation → starch contamination 	- Strengths for high BW	 Remainder film lost in doctoring (not recirculated) 		
- Overdrying for profiles				

Thank You

Recycled fiber and stock preparation systems

Paper and board machines

Automation systems

Paper machine process systems

The second for

Services

