EFFICIENT AND ENVIRONMENT FRIENDLY PAPER MAKING – VALUE ADDITION BY FORMING FABRIC AND CASE STUDIES

Barathi G

Wires & Fabriks (S.A.) Limited, Jaipur
Indian Paper Industry Scenario

- Turn over >50,000 Crores
- 6th rank in Energy intensive industries in India
- 15th position among Top global paper producers.

- Share in globe paper production is about 2.6%
- Fragmented with over 750 paper mills and around 50 mills >50000 TPA.
- Capacity Utilization around 89%

- Market segmented as
 - Packaging (46%),
 - Writing & Printing (32%),
 - Newsprint (18%) and
 - Specialty (4%)

- Raw material used as
 - Recycled (65%),
 - Virgin (24%) and
 - Agro-residue (11%).
It is found the projected growth rate @ 10% in Kraft & Packaging grade whereas @5% in Writing & Printing segment.

<table>
<thead>
<tr>
<th>S No</th>
<th>Paper grade</th>
<th>15 - 16</th>
<th>16 - 17</th>
<th>17 - 18</th>
<th>18 - 19 (P)</th>
<th>19 - 20(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kraft</td>
<td>43.60</td>
<td>47.73</td>
<td>52.30</td>
<td>57.43</td>
<td>62.88</td>
</tr>
<tr>
<td>2</td>
<td>Writing & Printing</td>
<td>46.38</td>
<td>48.68</td>
<td>51.10</td>
<td>53.65</td>
<td>56.32</td>
</tr>
<tr>
<td>3</td>
<td>Paper Board</td>
<td>31.42</td>
<td>34.36</td>
<td>37.73</td>
<td>41.31</td>
<td>45.20</td>
</tr>
<tr>
<td>4</td>
<td>Specialty</td>
<td>2.09</td>
<td>2.13</td>
<td>2.17</td>
<td>2.21</td>
<td>2.25</td>
</tr>
<tr>
<td>5</td>
<td>Tissue</td>
<td>1.14</td>
<td>1.33</td>
<td>1.55</td>
<td>1.80</td>
<td>2.09</td>
</tr>
<tr>
<td>6</td>
<td>Newsprint</td>
<td>25.40</td>
<td>25.99</td>
<td>26.60</td>
<td>27.22</td>
<td>27.85</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>150.03</td>
<td>111.54</td>
<td>171.45</td>
<td>183.62</td>
<td>196.59</td>
</tr>
</tbody>
</table>

* Source: Care rating study
SWOT analysis

Competitive STRENGTH:
+ Large and growing domestic paper market
+ Know-how in non wood pulping and applications
+ Well developed printing industry
+ Local market knowledge

Competitive Weakness:
- Fiber shortage - wood fiber and poor collection of waste paper
- Small and fragmented industry structure
- Attracting highly skilled manpower
- Infrastructure, high transportation cost
- High energy costs
SWOT analysis

Competitive Opportunity:
+ Domestic market potential
+ Forest plantation potential
+ Integrates of combined wood and agro based papermaking
+ Government literacy program – increasing demand for printing/writing papers
+ Low labor costs (allow e.g. cost effective sorting of imported mixed waste)
+ Export potential

Competitive Threats:
- Unpreparedness for international competition - both on price and quality
- Decline in capacity due to environmental pressures
- Decline in capacity as unable to compete at national and international levels with respect to quality and cost of products.
Now in Paper industry, the requirements of paper makers to produce the paper at \textit{environmentally and efficiently by economically}.

- Market emphasis on improvement of Paper quality
- Improved Paper surface due to modern printing technologies on all paper grades
- Efficient usage of costly fibers
- More filler addition to reduce input cost and improve paper properties
- Lower basis weight and faster the machine speed.
Forming fabric Properties Vs cost effect

<table>
<thead>
<tr>
<th>Fabric Property</th>
<th>Effect on Operation</th>
<th>Effect on Sheet quality</th>
<th>Effect on Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage (Air Permeability, Drainage Index, Surface Open area)</td>
<td>Power consumption & Draws</td>
<td>Formation</td>
<td>- Energy cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-couch dryness</td>
<td>- Efficient cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed of the machine</td>
<td></td>
</tr>
<tr>
<td>Fiber Support Index</td>
<td>Cleanliness in return run</td>
<td>Wire mark</td>
<td>- Fiber cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheet release</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porosity</td>
<td></td>
</tr>
<tr>
<td>Maximum Frame length</td>
<td>First Pass Retention</td>
<td>Improved two sidedness</td>
<td>- Fiber cost</td>
</tr>
<tr>
<td></td>
<td>Clear back water system</td>
<td>Less fluff/linting</td>
<td>- Efficiency cost</td>
</tr>
<tr>
<td></td>
<td>Clean run of machine</td>
<td>Improved total retention</td>
<td>- Energy cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less ETP load on drained fines and fillers</td>
<td></td>
</tr>
</tbody>
</table>
Needs some thing.....

New Forming fabric which should suits for Single Layer position Paper machines.........
Paper making demand & solution

- FSI
- Surface Opern area
- Retention
- Wear Volume
- Surface marking

Drainage

Requirement
Single Layer
Aquaflex
Laboratory Drainage study

(Drainage time in Sec)

<table>
<thead>
<tr>
<th>Product</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUAFLEX (420 cfm)</td>
<td>1.13</td>
<td>1.27</td>
<td>1.7</td>
<td>2.1</td>
<td>17.8</td>
</tr>
<tr>
<td>Single Layer (500 cfm)</td>
<td>1.28</td>
<td>1.36</td>
<td>1.64</td>
<td>2.04</td>
<td>21.08</td>
</tr>
</tbody>
</table>

40 gsm sheets made with same consistency for measuring the time taken in seconds for standard Single Layer & New generation fabric (AQUAFLEX) designs.
Laboratory Drainage study

(Drainage time in Sec)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.28</td>
<td>1.36</td>
<td>1.64</td>
<td>2.04</td>
<td>21.08</td>
</tr>
<tr>
<td>1.13</td>
<td>1.27</td>
<td>1.7</td>
<td>2.1</td>
<td>17.8</td>
</tr>
</tbody>
</table>

- **Aquaflex (420 cfm)**
- **Single Layer (500 cfm)**
Structural comparison

<table>
<thead>
<tr>
<th></th>
<th>5 Shed Single Layer</th>
<th>AQUAFLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area %</td>
<td>29.9%</td>
<td>45.80 %</td>
</tr>
<tr>
<td>Fiber Support Index</td>
<td>76</td>
<td>140</td>
</tr>
<tr>
<td>Air Permeability, CFM</td>
<td>500</td>
<td>420</td>
</tr>
</tbody>
</table>
High Fiber support points

Fibre Support Index

- SL 27/cm: 76
- SL 30/cm: 81
- 1.5 L: 99
- AQUAFLEX: 140
✓ Improved retention helps in efficient use of fibers,
✓ Increased off-couch dryness thus machine runnability improved,
✓ Clean run due to less plugging by improved mechanical retention,
✓ Good sheet release due to fine surface of fabric,
✓ High drainage capacity with short forming available time (with increased speed)
✓ Reduced solid lost thus reducing ETP load with better sheet properties.
✓ Less shower pressure required due to free drainage holes
✓ Less vacuum requirement and less drive power required of Wire part due to good drainage & less sheet sealing.
✓ Improved paper surface with less wire/drainage marking for better printability.
Customer A:
Fourdrinier machine making 44 to 90 GSM with 360 m/min. speed with Recycled furnish where previously single layer was used.

Objective: Improved retention and drive load reduction

Results:
- ✓ Higher First Pass Retention from 74.12% to 78.88%. (+6.4%)
- ✓ Higher First Pass Ash Retention from 42.93% to 51.16% (+19.2%)
- ✓ Higher FPR yields less cost of fiber, high couch solids and thus less steam consumption.
- ✓ These improvements with reduced dosage of Retention aid chemicals.
- ✓ Drag load reduction by 7%
- ✓ Good printability by mark-free paper.
Case study # 1

FPAR increase of 19.2%

Blank: 34.77, With RA Change: 42.93, With AQUAFLEX: 51.16

RA reduction of 35.8%

Blank: 357, With RA Change: 307, With AQUAFLEX: 197

Drive Load reduction of 7%

Single Layer: 50%, AQUAFLEX: 43%
Case study # 1

Cost Benefit Analysis:

- Fiber saving due to Fiber retention – *Reduced cost of fibers*
- Reduction in Retention aid chemicals – *Reduced cost of chemicals*
- Drive load reduction – *Reduced Energy cost*
- Improved off-couch solids – *Increased productivity by speed up the machine*
- Quality improvement of end product

Paper made with Single Layer – Surface marking

Paper made with AQUAFLEX – No marking
Customer B:
Fourdrinier machine making 44 to 90 GSM with 360 m/min. speed in Recycled furnish

Objective: Improved First pass retention
Reduced back water ppm
Reduced Drive load
Improved formation by controlled initial drainage

Results:
- Improved First Pass Retention & First Pass Ash retention
- Higher FPR yields less cost of fiber, high couch solids and thus less steam consumption.
- Improvement in FPR with same dosage of Retention aid chemicals.
- Drive load reduction
Results:

✓ Off-couch dryness increased
✓ Wire part drive load reduced in all basis weight
✓ Solid lost reduced due to controlled initial solid lost.
Paper makers can produce paper in **efficiently and environmental friendly** by reducing cost of Operation and **Quality improvement** in the final paper making with the help of improvement in technology through 3 E’s – Efficiency, Environment and Energy.

The new forming fabric design will help in

- Improved First pass fiber & ash retention for improved paper finish and reduce the fiber cost
- Reduce Energy cost by reduced drive load & steam cost by increasing off-couch solids
- Improvement in machine runnability by reduced stickies with required drainage capacity to match with Single Layer forming fabric
- Reduce solid lost in forming section to reduce ETP load and clean back water system
- Necessity has come to improve quality and reduce cost of operation for success in competitive way to fulfill the demand of growth of Quality paper in India.
For your Attention