SUSTAINED GROWTH WITH MAINTENANCE BEST PRACTICES AND RE-ENGINEERING

EFFORTS IN TNPL

B.Mahesh, P.PremRanjan & T.Kalaiarasan

TNPL – Road Map

TNPL – Capacity Growth

Specific Consumption

Electrical Energy kWh/T

Steam T/T

Water Cu.Mtr/T

Maintenance Management

Maintenance Best Practices in TNPL

- Diagnosis and Monitoring of Bearing
- Sustained health of Lubrication and Hydraulic Systems
- Root Cause Failure Analysis
- System and Machine Audits
- Continual Improvement
- Computerised Maintenance Management
- Economics of Maintenance

Best Practice 1: Bearing Condition Monitoring

- Why Bearing condition monitoring
 - Bearing form the heart of any rotating equipment
 - No two bearing are identical in behaviour
 - Bearing condition is influenced by installation, operating condition and maintenance
 - Successful monitoring techniques available are Shock Pulse Method and Vibration method

Bearing Condition Monitoring ...

- Shock Pulse Method (SPM)
 - SPM T2001 & SPM Leonova

Bearing Condition Monitoring ...

- Vibration Method
 - Online bearing monitoring system

Bearing Condition Monitoring ...

• Bearing Monitoring Success Rate

	2014	2015	2016	2017
No of Bearings Changed due to SPM abnormality	61	28	51	22
No. of Bearings failed without SPM abnormality	3	3	3	2
% of correct prediction by SPM	95	89	94	92

Best Practice 2 : Lubrication & Hydraulic System

- Importance of Health of Lub & Hyd Systems
 - Moden machines are with automatic lub systems
 - Hydraulic systems are integral part of any machine
 - Sophisticated hydraulic systems call for clean oil
 - Water entry into lubrication oil is common

Lubrication & Hydraulic System ...

• Health of Lub & Hyd systems

- Patch test of oil samples periodically
- Viscosity test for oils in periodical interval
- Spectrum analysis of oil when ever required

Lubrication & Hydraulic System ...

• Health of Lub & Hyd systems

- Monitoring and controlling water level in oil
- Dedicated oil purification system for each tank
- Operating oil cleaners on a regular basis
- Oil filling through filter unit

Best Practice 3: Root Cause Failure Analysis

- PM1 Suction Couch Roll Back Bearing Failure
 - Average bearing life was about 250 days
 - Roll change was necessary due to bearing failures

Root Cause Failure Analysis ...

- Failure Analysis :
 - Lubrication
 - Water entry
 - Assembly
 - Alignment
 - Dimensional checks on back head
 - run-out of back head in the bearing seating area
 - Perpendiculatiry of bearing seating area with reference to head mounting face

Root Cause Failure Analysis ...

• Root Cause :

• Deviation of 260 microns in the perpendicularity of bearing seating area with respect to the head mounting face

• Corrective actions:

- Metal spraying the bearing seating area
- Re-machining to tolerances specified by manufacturer

• RCA Benefits :

• No similar failure till date (Bearing was changed after a run time of almost 2000 days)

Best Practice 4: System and Machine Audits

- Why Audits?
 - To increase efficiency of systems/machines
 - To identify weak links in systems/machines
 - To generate data for future upgradations
 - To check the success rate of any changes

System and Machine Audits ...

• Audits done

 PM1 Deculator Cleaning System 	-	2003
 PM1 Wet end and Headbox 	-	2006
 PM1 Dryer Section 	-	2009
– Winder 1	-	2013
 Mill wide Energy 	-	2015
 PM1 & PM2 Vacuum System 	-	2017

System and Machine Audits ...

• Audit of Vacuum Systems in PM1 and PM2

Best Practice 5: Continual Improvement

- LT drive gearboxes in EOT cranes
 - Motor-Gearbox-connecting shaft arrangement
 - Highly maintenance prone
 - Uneven movement of wheels leading to other damages

Continual Improvement ...

- Modifications
 - Shaft mounted gearmotor introduced
 - Maitenance free
 - Smooth operation
 - Power saving (5.5 kW motor replaced with 4 kW motor with VFD)

Best Practice 6 : Computerised Maintenance Management

- CMMS
 - Dbase
 - MS Access
 - OIIS
 - ERP

Computerised Maintenance Management ...

- Benefits of CMMS
 - Complete history of maintenance activities
 - Maintenance cost for each asset / work order
 - Resource utilisation details
 - Scheduling preventive maintenance activities

Best Practice 7: Economics of Maintenance

• Why Economics?

- Maintenance cost is major part that can affect the bottom line
- Bearings constitute a major portion of maintenance cost
- Large size bearings are more in Paper Machine
- Numerous technologies available to revamp a used bearing

Economics of Maintenance ...

- Reconditioning of Large Size Bearing
 - Bearing 230/850 CAK/C083W33
 - Technology available with bearing manufacturers .

Economics of Maintenance ...

• Economics

- Cost of new bearing (approx)
- Cost of reconditioning
- Results
 - Bearing installed during April 2013
 - Running time of over 1000 days
 - Condition found good till date

- = Rs. 30 lakhs
- = Rs. 11.2 lakhs

Maintenance Re-engineering

- Why Re-engineering?
 - Failure pattern undergoes change with time
 - Bring back the machine to its original condition
 - Improve performance of a machine
 - Maintenance costs are very high
 - Ease of maintenance

Re-engineering Effort 1: Roll Grinding Machine

- Issues encountered:
 - Roll Grinding Machine was in the same building as the Paper Machine
 - Vibration from Winder transferred to Roll Grinding Machine
 - Roll finish was very severely affected
 - Chattering marks on roll surfaces
 - Twist observed in RG machine bed

Roll Grinding Machine ...

• Actions Taken:

- Efforts to reduce vibration dampening in winder failed
- Shifting of RG Machine was the only option
- Floating concrete bed was made ready weighing 450 MT
- Concrete was laid over 10 springs to dampen vibrations
- RG Machine alignment done
- RG Machine was upgraded with CNC controls

Roll Grinding Machine ...

Roll Grinding Machine ...

- **Benefits of Re-engineering:** •
 - Better roll finishes ____
 - Increased re-grinding intervals —
 - Lower grinding time —
 - Ability to grind any customised profile

Re-engineering 2 : Change in Lubrication Arrangement

• Concept, Changes and Benefits:

- Felt rolls in screen stretcher circuits were with grease lubrication
- Life of oil lubricated bearings are higher than grease lubricated bearings
- Re-engineered bearing housings to suit oil lubrication
- Benefits of lower bearing failures

Change in Lubrication Arrangement ...

		Drive side	Tenuel side	
Period	Maint.Type /Lubrication	Bearing Population	14	14
1985 to 1998 Preventive / Grease	Changed as per Schedule	3	3	
	Preventive / Grease	Breakdown	2	1
	Total replaced	5	3	
1989 to 2002 Predictive		Changed as per SPM value	27	23
	Predictive / Grease	Breakdown	0	1
		Total brgs replaced	27	24
2003 to 2016	Proactive / Oil	Changed as per SPM value	4	2
		Breakdown	0	1
		Total brgs replaced	4	3

Bearing Location

Re-engineering 3 : PM1 Press Part Frames

- Cause and Effect:
 - Audit of entire wet end for structural stability
 - Identified structures to be weak
 - Re-engineered frames to introduce cantilevers
 - Project taken up as 'Life Cycle Extension'

PM1 Press Part Frames ...

• Benefits of Re-engineering

- Stable structures. Hence higher machine speeds
- Easy felt changes. Hence lower downtime
- Better operational control with hydraulic systems

Re-engineering 4 : PM1 Press Part CC Roll Covering

- Re-engineering with Value Engineering:
 - Original shell Wound steel wire
 - Groove depth decreased and recovering was due
 - Alternatives Identified:
 - Steel Sleeve
 - PU cover
 - Composite cover
 - Evaluation done based on
 - Grinding Interval
 - Heat and Chemical resistance
 - Physical impact resistance

PM1 Press Part CC Roll Covering ...

- Results:
 - PU cover technically meeting the requirement
 - Cost of PU cover is just 1/3rd the cost of steel covering
 - Recovered in 2005 and no significant damage till now
 - Properties of paper maintained with slight increase in bulk

Re-engineering 5 : Cutter Knive Angles Optimisation

- Steps towards Optimisation:
 - Original High Carbon High Chromium knives regrind interval was low
 - HCHCr knives were changed to Carbide Tipped knives
 - Production achieved:
 - HCHCr knives = 800 Tons
 - Carbide Tipped = 1900 Tons
 - Knive angle optimised after trials:
 - Top knife angle = 24° ipo 19°
 - Bottom knifeo angle= 21° ipo 16°

Cutter Knive Angles Optimisation ...

• Phenomenal increase in knives regrind interval

Beilomatik Cutter Knives Regrind Interval

Installation

Re-engineering 6 :

Modification for Ease of Maintenance

• Issues Encountered:

- 4 vibrating screens in a confined area
- Restricted work space and difficult to approach
- Due to want of space valves in wrong positions
- Dry run of Speed Flow rolls
- Frequent damages to vibrating screen mesh

Modification for Ease of Maintenance ...

- Modifications done:
 - All 4 vibrating screens shifted to a new are with ample workspace
 - Valve positions shifted near the roll by rerouting pipes
- Benefits obtained:
 - Dry run of rolls avoided
 - Life of vibrating screen mesh increased

			Average Mesh
	No.	No. of	Change
	of	mesh	Frequency
Fin.Year	Year	changes	(days)
2009-2011	2	120	24
2011-2016	5	142	52

Results of Maintenance Best Practices and Re-engineering

Results ...

Results ...

Contacts

B.Mahesh Sr.Manager(Mechanical) mahesh.b@tnpl.co.in

P.PremRanjan Manager(Mechanical) premranjan.p@tnpl.co.in

T.Kalaiarasan Manager(Mechanical) kalaiarasan.T@tnpl.co.in

Thank

You

